October  2010, 6(4): 709-727. doi: 10.3934/jimo.2010.6.709

A multi-attribute approach for setting pediatric vaccine stockpile levels

1. 

Rochester Institute of Technology, 81 Lomb Memorial Drive, Rochester, NY 14623, United States

2. 

University of Illinois, 201 N. Goodwin Ave, Urbana, IL 61801, United States, United States

Received  September 2009 Revised  March 2010 Published  September 2010

Routine immunization is the most effective public health strategy to prevent the occurrence and spread of infectious diseases. An important factor impacting such effectiveness is the availability of a stable vaccine supply. Vaccine supply interruptions are likely and can prevent children from receiving a full course of vaccinations and hence, increase the risk of disease outbreaks. In the United States, public health officials have established the Pediatric Vaccine Stockpile Program (PVSP) as the best strategy to mitigate the impact of vaccine supply interruptions. The PVSP aims to maintain a six-month national supply of routinely administered pediatric vaccines. When deciding how many vaccine doses to order for the next fiscal year, public health decision-makers must not only minimize the impact of potential vaccine shortages, but also, maintain or increase vaccine coverage rates while minimizing costs. This paper uses the relative importance of each pediatric vaccine to define a multi-attribute utility function that models the conflicting interests of PVSP public health decision-makers when ordering vaccines for the next fiscal year. The aim of the resulting framework is to assist decision-makers in managing the PVSP. As an illustration, this paper explores the implications of optimizing a proposed expected utility function under budget constraints for hypothetical (albeit likely) vaccine supply scenarios, and the potential behavior of public health decision-makers.
Citation: Ruben A. Proano, Sheldon H. Jacobson, Janet A. Jokela. A multi-attribute approach for setting pediatric vaccine stockpile levels. Journal of Industrial and Management Optimization, 2010, 6 (4) : 709-727. doi: 10.3934/jimo.2010.6.709
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, 1991.

[2]

A. J. Becker, The scaling of repairable spares, Maintenance Management International, 6 (1987), 239-247.

[3]

G. E. G. Beroggi, "Decision Modeling in Policy Management: An Introduction to Analytic Concepts," Kluwer Academic Publishers, Boston, 1999.

[4]

M. Braglia, A. Grassi and R. Montanari, Multi-attribute classification method for spare parts inventory management, J. Qual. Mainten. Eng., 10 (2004), 55-65. doi: 10.1108/13552510410526875.

[5]

CDC, Vaccines and preventable diseases: Current vaccine shortages and delays, Retrieved July 15, 2007, http://www.cdc.gov/vaccines/vac-gen/shortages/default.htm, 2007.

[6]

CDC, Vaccine price list, Retrieved December 7, 2007, http://www.cdc.gov/vaccines/programs/vfc/cdc-vac-price-list.htm, 2007.

[7]

CDC, History and epidemiology of global smallpox eradication, Retrieved January 14, 2007, http://www.bt.cdc.gov/agent/smallpox/training/overview/pdf/eradicationh istory.pdf, 2003.

[8]

R. T. Clemen and T. Reilly, "Making Hard Decisions with DecisionTools®," 2nd edition, Duxbury Thomson Learning, Pacific Grove, California, 2001.

[9]

S. L. Cochi, Vaccine financing from the National Immunization Program's perspective, Retrieved January 14, 2007, www.hhs.gov/nvpo/meetings/jun2004/cochi.ppt, 2004.

[10]

P. G. Coen, P. T. Heath and G. P Garnett, The HiB immunization program in the Oxford region: An analysis of the impact of vaccine administration on the incidence of the disease, Epidemiol. Infect., 123 (1999), 389-402. doi: 10.1017/S0950268899002952.

[11]

P. C. Fishburn, Independence in utility theory with whole product sets, Oper. Res., 13 (1965), 28-45. doi: 10.1287/opre.13.1.28.

[12]

C. F. Simoes Gomes, K. R. A. Nunes, L. H. Xavier, R. Cardoso and R. Valle, Multicriteria decision making applied to waste recycling in Brazil, Omega, 36 (2008), 395-404. doi: 10.1016/j.omega.2006.07.009.

[13]

S. H. Jacobson, E. C. Sewell and R. A. Proano, An analysis of the pediatric vaccine supply shortage problem, Health Care Manage. Sci., 9 (2006), 371-389. doi: 10.1007/s10729-006-0001-5.

[14]

S. H. Jacobson, E. C. Sewell, R. A. Proano and J. A. Jokela, Stockpile levels for pediatric vaccines: How much is enough?, Vaccine, 24 (2006), 3530-3537. doi: 10.1016/j.vaccine.2006.02.004.

[15]

R. L. Keeney and H. Raiffa, "Decisions with Multiple Objectives: Preferences and Value Tradeoffs," Cambridge University Press, New York, 1993.

[16]

K. S. Lane, S. Y. Chu and J. M. Santoli, The United States pediatric vaccine stockpile program, Clin. Infect. Dis., 42 (2006), 125-129. doi: 10.1086/499591.

[17]

A. Mas-Colell, M. D. Whinston and J. Green, "Microeconomic Theory," Oxford University Press, New York, 1995.

[18]

National Vaccine Advisory Committee, Strengthening the supply of routinely recommended vaccines in the United States, JAMA, 290 (2003), 3122-3128.

[19]

U. Ozden and E. A. Demirtas, An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection, Omega, 36 (2008), 509-521. doi: 10.1016/j.omega.2006.12.004.

[20]

K. Price, R. M. Storn and J. A. Lampinen, "Differential Evolution: A Practical Approach to Global Optimization," Natural Computing Series. Secaucus, NJ, 2005.

[21]

S. Stokley, J. M. Santoli, B. W. V. Kelley, A. Vargas-Rosales and L. E. Rodewald, Impact of vaccine shortages on immunization programs and providers, Am. J. Prev. Med., 26 (2004), 15-21. doi: 10.1016/j.amepre.2003.09.010.

[22]

A. Teixeira de Almeida, Multi-attribute decision making on maintenance: Spares and contracts planning, Eur. J. Oper. Res., 129 (2001), 235-241. doi: 10.1016/S0377-2217(00)00220-4.

[23]

S. A. Whalley, J. M. Murray, D. Brown, G. J. M. Webster, V. C. Emery, G. M. Dusheiko and A. S. Perelson, Kinetics of acute Hepatitis B virus infection in humans, J. Exp. Med., 193 (2001), 847-853. doi: 10.1084/jem.193.7.847.

[24]

E. Wilder, Pediatric vaccine stockpiles. a status report on the pediatric vaccine stockpiles, Retrieved January 14, 2007, http://www.hhs.gov/nvpo/nvac/feb05.html and http://www.hhs.gov/nv po/nvac/documents/Wilder0205.ppt, 2005.

[25]

F. Zhou, S. Santoli, M. Messonnier, H. Yusuf, A. Shefer, S. Chu, L. Rodewald and R. Harpaz, Economic evaluation of the 7-vaccine routine childhood immunization schedule in the United States, 2001, Arch. Pediatr. Adolesc. Med., 159 (2005), 1136-1144. doi: 10.1001/archpedi.159.12.1136.

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, 1991.

[2]

A. J. Becker, The scaling of repairable spares, Maintenance Management International, 6 (1987), 239-247.

[3]

G. E. G. Beroggi, "Decision Modeling in Policy Management: An Introduction to Analytic Concepts," Kluwer Academic Publishers, Boston, 1999.

[4]

M. Braglia, A. Grassi and R. Montanari, Multi-attribute classification method for spare parts inventory management, J. Qual. Mainten. Eng., 10 (2004), 55-65. doi: 10.1108/13552510410526875.

[5]

CDC, Vaccines and preventable diseases: Current vaccine shortages and delays, Retrieved July 15, 2007, http://www.cdc.gov/vaccines/vac-gen/shortages/default.htm, 2007.

[6]

CDC, Vaccine price list, Retrieved December 7, 2007, http://www.cdc.gov/vaccines/programs/vfc/cdc-vac-price-list.htm, 2007.

[7]

CDC, History and epidemiology of global smallpox eradication, Retrieved January 14, 2007, http://www.bt.cdc.gov/agent/smallpox/training/overview/pdf/eradicationh istory.pdf, 2003.

[8]

R. T. Clemen and T. Reilly, "Making Hard Decisions with DecisionTools®," 2nd edition, Duxbury Thomson Learning, Pacific Grove, California, 2001.

[9]

S. L. Cochi, Vaccine financing from the National Immunization Program's perspective, Retrieved January 14, 2007, www.hhs.gov/nvpo/meetings/jun2004/cochi.ppt, 2004.

[10]

P. G. Coen, P. T. Heath and G. P Garnett, The HiB immunization program in the Oxford region: An analysis of the impact of vaccine administration on the incidence of the disease, Epidemiol. Infect., 123 (1999), 389-402. doi: 10.1017/S0950268899002952.

[11]

P. C. Fishburn, Independence in utility theory with whole product sets, Oper. Res., 13 (1965), 28-45. doi: 10.1287/opre.13.1.28.

[12]

C. F. Simoes Gomes, K. R. A. Nunes, L. H. Xavier, R. Cardoso and R. Valle, Multicriteria decision making applied to waste recycling in Brazil, Omega, 36 (2008), 395-404. doi: 10.1016/j.omega.2006.07.009.

[13]

S. H. Jacobson, E. C. Sewell and R. A. Proano, An analysis of the pediatric vaccine supply shortage problem, Health Care Manage. Sci., 9 (2006), 371-389. doi: 10.1007/s10729-006-0001-5.

[14]

S. H. Jacobson, E. C. Sewell, R. A. Proano and J. A. Jokela, Stockpile levels for pediatric vaccines: How much is enough?, Vaccine, 24 (2006), 3530-3537. doi: 10.1016/j.vaccine.2006.02.004.

[15]

R. L. Keeney and H. Raiffa, "Decisions with Multiple Objectives: Preferences and Value Tradeoffs," Cambridge University Press, New York, 1993.

[16]

K. S. Lane, S. Y. Chu and J. M. Santoli, The United States pediatric vaccine stockpile program, Clin. Infect. Dis., 42 (2006), 125-129. doi: 10.1086/499591.

[17]

A. Mas-Colell, M. D. Whinston and J. Green, "Microeconomic Theory," Oxford University Press, New York, 1995.

[18]

National Vaccine Advisory Committee, Strengthening the supply of routinely recommended vaccines in the United States, JAMA, 290 (2003), 3122-3128.

[19]

U. Ozden and E. A. Demirtas, An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection, Omega, 36 (2008), 509-521. doi: 10.1016/j.omega.2006.12.004.

[20]

K. Price, R. M. Storn and J. A. Lampinen, "Differential Evolution: A Practical Approach to Global Optimization," Natural Computing Series. Secaucus, NJ, 2005.

[21]

S. Stokley, J. M. Santoli, B. W. V. Kelley, A. Vargas-Rosales and L. E. Rodewald, Impact of vaccine shortages on immunization programs and providers, Am. J. Prev. Med., 26 (2004), 15-21. doi: 10.1016/j.amepre.2003.09.010.

[22]

A. Teixeira de Almeida, Multi-attribute decision making on maintenance: Spares and contracts planning, Eur. J. Oper. Res., 129 (2001), 235-241. doi: 10.1016/S0377-2217(00)00220-4.

[23]

S. A. Whalley, J. M. Murray, D. Brown, G. J. M. Webster, V. C. Emery, G. M. Dusheiko and A. S. Perelson, Kinetics of acute Hepatitis B virus infection in humans, J. Exp. Med., 193 (2001), 847-853. doi: 10.1084/jem.193.7.847.

[24]

E. Wilder, Pediatric vaccine stockpiles. a status report on the pediatric vaccine stockpiles, Retrieved January 14, 2007, http://www.hhs.gov/nvpo/nvac/feb05.html and http://www.hhs.gov/nv po/nvac/documents/Wilder0205.ppt, 2005.

[25]

F. Zhou, S. Santoli, M. Messonnier, H. Yusuf, A. Shefer, S. Chu, L. Rodewald and R. Harpaz, Economic evaluation of the 7-vaccine routine childhood immunization schedule in the United States, 2001, Arch. Pediatr. Adolesc. Med., 159 (2005), 1136-1144. doi: 10.1001/archpedi.159.12.1136.

[1]

Yan Zhang, Yonghong Wu, Haixiang Yao. Optimal health insurance with constraints under utility of health, wealth and income. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1519-1540. doi: 10.3934/jimo.2021031

[2]

Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1

[3]

Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013

[4]

Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 1-20. doi: 10.3934/mbe.2018001

[5]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029

[6]

Zuzana Chladná. Optimal time to intervene: The case of measles child immunization. Mathematical Biosciences & Engineering, 2018, 15 (1) : 323-335. doi: 10.3934/mbe.2018014

[7]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

[8]

Christoph Hauert, Nina Haiden, Karl Sigmund. The dynamics of public goods. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 575-587. doi: 10.3934/dcdsb.2004.4.575

[9]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems and Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

[10]

S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999

[11]

Roy Curtiss III. The impact of vaccines and vaccinations: Challenges and opportunities for modelers. Mathematical Biosciences & Engineering, 2011, 8 (1) : 77-93. doi: 10.3934/mbe.2011.8.77

[12]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[13]

Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences & Engineering, 2018, 15 (2) : 337-359. doi: 10.3934/mbe.2018015

[14]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029

[15]

Ernan Haruvy, Ashutosh Prasad, Suresh Sethi, Rong Zhang. Competition with open source as a public good. Journal of Industrial and Management Optimization, 2008, 4 (1) : 199-211. doi: 10.3934/jimo.2008.4.199

[16]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control and Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[17]

Grace Gao, Sasank Maganti, Karen A. Monsen. Older adults, frailty, and the social and behavioral determinants of health. Big Data & Information Analytics, 2017  doi: 10.3934/bdia.2017012

[18]

Christine Burggraf, Wilfried Grecksch, Thomas Glauben. Stochastic control of individual's health investments. Conference Publications, 2015, 2015 (special) : 159-168. doi: 10.3934/proc.2015.0159

[19]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[20]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (7)

[Back to Top]