
Previous Article
A method for optimizing over the integer efficient set
 JIMO Home
 This Issue

Next Article
Twoperson knapsack game
An exterior point linear programming method based on inclusive normal cones
1.  School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia 
References:
[1] 
J. M. Borwein and A. S. Lewis, "Convex Analysis and Nonlinear Optimization. Theory and Examples,", Second edition. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, (2006). 
[2] 
G. B. Dantzig, Maximization of a linear function of variables subject to linear inequalities,, Activity Analysis of Production and Allocation, (1951), 339. 
[3] 
N. Karmarkar, A new polynomialtime algorithm for linear programming,, Combinatorica, 4 (1984), 373. doi: 10.1007/BF02579150. 
[4] 
L. G. Khachiyan, A polynomial algorithm in linear programming,, Doklady Akademii Nauk SSSRS, 244 (1979), 1093. 
[5] 
T. Terlaky and S. Zhang, Pivot rules for linear programming: A survey on recent theoretical developments,, Annals of Operations Research, 46 (1993), 203. doi: 10.1007/BF02096264. 
[6] 
R. J. Vanderbei, "Linear Programming  Foundations and Extensions,", 3rd Ed., (2008). 
show all references
References:
[1] 
J. M. Borwein and A. S. Lewis, "Convex Analysis and Nonlinear Optimization. Theory and Examples,", Second edition. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, (2006). 
[2] 
G. B. Dantzig, Maximization of a linear function of variables subject to linear inequalities,, Activity Analysis of Production and Allocation, (1951), 339. 
[3] 
N. Karmarkar, A new polynomialtime algorithm for linear programming,, Combinatorica, 4 (1984), 373. doi: 10.1007/BF02579150. 
[4] 
L. G. Khachiyan, A polynomial algorithm in linear programming,, Doklady Akademii Nauk SSSRS, 244 (1979), 1093. 
[5] 
T. Terlaky and S. Zhang, Pivot rules for linear programming: A survey on recent theoretical developments,, Annals of Operations Research, 46 (1993), 203. doi: 10.1007/BF02096264. 
[6] 
R. J. Vanderbei, "Linear Programming  Foundations and Extensions,", 3rd Ed., (2008). 
[1] 
Soodabeh Asadi, Hossein Mansouri. A Mehrotra type predictorcorrector interiorpoint algorithm for linear programming. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 147156. doi: 10.3934/naco.2019011 
[2] 
ZhengHai Huang, ShangWen Xu. Convergence properties of a noninteriorpoint smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569584. doi: 10.3934/jimo.2007.3.569 
[3] 
Liming Sun, LiZhi Liao. An interior point continuous pathfollowing trajectory for linear programming. Journal of Industrial & Management Optimization, 2018, 13 (5) : 118. doi: 10.3934/jimo.2018107 
[4] 
Rong Hu, YaPing Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 573586. doi: 10.3934/jimo.2016032 
[5] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 17431767. doi: 10.3934/dcdsb.2018235 
[6] 
Yinghong Xu, Lipu Zhang, Jing Zhang. A fullmodifiedNewton step infeasible interiorpoint algorithm for linear optimization. Journal of Industrial & Management Optimization, 2016, 12 (1) : 103116. doi: 10.3934/jimo.2016.12.103 
[7] 
Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 19. doi: 10.3934/jimo.2018170 
[8] 
ZhengHai Huang, Nan Lu. Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$SCLCP. Journal of Industrial & Management Optimization, 2012, 8 (1) : 6786. doi: 10.3934/jimo.2012.8.67 
[9] 
Victoriano Carmona, Emilio Freire, Soledad FernándezGarcía. Periodic orbits and invariant cones in threedimensional piecewise linear systems. Discrete & Continuous Dynamical Systems  A, 2015, 35 (1) : 5972. doi: 10.3934/dcds.2015.35.59 
[10] 
Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems  A, 2011, 30 (2) : 477492. doi: 10.3934/dcds.2011.30.477 
[11] 
Giuseppe Marino, HongKun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791808. doi: 10.3934/cpaa.2004.3.791 
[12] 
Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441449. doi: 10.3934/naco.2018027 
[13] 
Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 6778. doi: 10.3934/jimo.2011.7.67 
[14] 
Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable intervalvalued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131142. doi: 10.3934/jimo.2013.9.131 
[15] 
XianJun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361370. doi: 10.3934/naco.2011.1.361 
[16] 
XiaoBing Li, QiLin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 11331151. doi: 10.3934/jimo.2018089 
[17] 
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323344. doi: 10.3934/amc.2010.4.323 
[18] 
Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (2) : 10091024. doi: 10.3934/jimo.2016059 
[19] 
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 49514977. doi: 10.3934/dcds.2018216 
[20] 
Pilar Bayer, Dionís Remón. A reduction point algorithm for cocompact Fuchsian groups and applications. Advances in Mathematics of Communications, 2014, 8 (2) : 223239. doi: 10.3934/amc.2014.8.223 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]