October  2010, 6(4): 861-880. doi: 10.3934/jimo.2010.6.861

Adaptive control of nonlinear systems using fuzzy systems

1. 

Dep. of Elec. Eng., Higher Technological Institute, Ramadan 10th City, Egypt

Received  March 2007 Revised  June 2010 Published  September 2010

In this paper we consider the adaptive control problem for a class of systems governed by nonlinear differential equations. Using Takagi-Sugeno approach, we have proposed a fuzzy model, which is linear in nature, the behavior of which is close to that of the unknown (nonlinear) plant. Based on this fuzzy model, we have proposed certain control structure with the help of which the plant output is capable of tracking certain desired trajectory. Using a suitable objective function and variation arguments, we have developed a set of necessary conditions with the help of which the parameters of the proposed fuzzy model and controller can be determined. Based on these necessary conditions, a numerical scheme is presented for computing the unknowns. Further, the question of continuous dependence of the proposed estimator and controller on system parameters (robustness) has been studied. Finally, the proposed adaptive control scheme has been applied to two different examples to illustrate the effectiveness of the proposed adaptive control scheme.
Citation: Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861
References:
[1]

N. Ahmed, "Elements of Finite Dimensional Systems and Control Theory," Pitman Monographs and Surveys in Pure and Applied Mathematics, 37,, Longman Scientific and Technical, (1988).   Google Scholar

[2]

M. Alata and K. Demirli, Adaptive control of a class of nonlinear systems with first order Parameterized Sugeno fuzzy approximator,, IEEE Trans. on Syst., (2001), 410.   Google Scholar

[3]

G. Cybenko, Approximation by superposition of sigmoidal functions,, Math. Contr. Signals Syst., 2 (1989), 303.  doi: 10.1007/BF02551274.  Google Scholar

[4]

T. Dabbous, Filtering of linear partially observed stochastic systems: The fuzzy logic approach,, Dynamic and Contr., 11 (2001), 315.  doi: 10.1023/A:1020898203511.  Google Scholar

[5]

T. Dabbous, Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters,, Dynamic and Contr., 11 (2001), 243.  doi: 10.1023/A:1015224002970.  Google Scholar

[6]

T. Dabbous and M. Bayoumi, Optimal control for partially observed nonlinear deterministic systems with fuzzy parameters,, Dynamic and Contr., 11 (2001), 353.  doi: 10.1023/A:1020867121258.  Google Scholar

[7]

A. Fradkov, Speed-gradient scheme and its applications in adaptive control,, Aut. Remote Control, 40 (1979), 1333.   Google Scholar

[8]

F. Girosi and T. Poggio, Network and best approximation property,, Biol. Cybern., 63 (1990), 169.  doi: 10.1007/BF00195855.  Google Scholar

[9]

T. Johansen and B. Foss, Constructing NARMAX models using ARMAX models,, Int. J. Contr., 58 (1993), 1125.  doi: 10.1080/00207179308923046.  Google Scholar

[10]

T. Johansen and P. Ioannu, Robust adaptive control of minimum phase nonlinear systems,, Adaptive Control Signal Processing, 10 (1996), 61.  doi: 10.1002/(SICI)1099-1115(199601)10:1<61::AID-ACS387>3.0.CO;2-H.  Google Scholar

[11]

L. Karsenti, Adaptive tracking strategy for a class of nonlinear systems,, IEEE Trans. on Aut. Contr., 43 (1998), 1272.   Google Scholar

[12]

M. Krstic and L. Kanellakopoulos, "Nonlinear Adaptive Control Design,", Wiely, (1995).   Google Scholar

[13]

Panteley E. Loria, A. and H. Nijmeijer, Control of chaotic duffin equation with uncertainty in all parameters,, IEEE Trans. on Circuit Sys., 45 (1998), 1252.  doi: 10.1109/81.736558.  Google Scholar

[14]

R. Marino and P. Tomel, Global adaptive feedback control of nonlinear systems: Part II: Nonliear parameterization,, IEEE Trans. Aut. Control, 38 (1993), 17.  doi: 10.1109/9.186309.  Google Scholar

[15]

R. Marino and P. Tomel, "Nonlinear Adaptive Control Design: Geometric, Adaptive and Robust,", Prentic-Hall, (1995).   Google Scholar

[16]

A. Morris and A Montague, Artificial neural networks: Studies in process modeling and control,, Trans. ICHEME, (1994), 3.   Google Scholar

[17]

J. Park and T. Sandberg, Universal approximation using radial function networks,, Neural Comp., 3 (1991), 246.  doi: 10.1162/neco.1991.3.2.246.  Google Scholar

[18]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control,, IEEE Trans. on Sys., (1985), 116.   Google Scholar

[19]

L. Wang, "Adaptive Fuzzy Systems and Control,", Prentice-Hall, (1994).   Google Scholar

[20]

L. Wang and J. Mendel, Back propagation fuzzy system as nonlinear system identifier,, Proc. IEEE Int. Conf. on Fuzzy Systems, (1992), 1409.   Google Scholar

[21]

A. Yesidirek and F. Lewis, Feedback linearization using neural networks,, Automatica, 31 (1995), 1659.  doi: 10.1016/0005-1098(95)00078-B.  Google Scholar

[22]

T. Zhang and C. Hang, Adaptive control of first order systems with nonlinear parameterization,, IEEE Trans. Aut. Control, 45 (2000), 1512.  doi: 10.1109/9.871761.  Google Scholar

show all references

References:
[1]

N. Ahmed, "Elements of Finite Dimensional Systems and Control Theory," Pitman Monographs and Surveys in Pure and Applied Mathematics, 37,, Longman Scientific and Technical, (1988).   Google Scholar

[2]

M. Alata and K. Demirli, Adaptive control of a class of nonlinear systems with first order Parameterized Sugeno fuzzy approximator,, IEEE Trans. on Syst., (2001), 410.   Google Scholar

[3]

G. Cybenko, Approximation by superposition of sigmoidal functions,, Math. Contr. Signals Syst., 2 (1989), 303.  doi: 10.1007/BF02551274.  Google Scholar

[4]

T. Dabbous, Filtering of linear partially observed stochastic systems: The fuzzy logic approach,, Dynamic and Contr., 11 (2001), 315.  doi: 10.1023/A:1020898203511.  Google Scholar

[5]

T. Dabbous, Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters,, Dynamic and Contr., 11 (2001), 243.  doi: 10.1023/A:1015224002970.  Google Scholar

[6]

T. Dabbous and M. Bayoumi, Optimal control for partially observed nonlinear deterministic systems with fuzzy parameters,, Dynamic and Contr., 11 (2001), 353.  doi: 10.1023/A:1020867121258.  Google Scholar

[7]

A. Fradkov, Speed-gradient scheme and its applications in adaptive control,, Aut. Remote Control, 40 (1979), 1333.   Google Scholar

[8]

F. Girosi and T. Poggio, Network and best approximation property,, Biol. Cybern., 63 (1990), 169.  doi: 10.1007/BF00195855.  Google Scholar

[9]

T. Johansen and B. Foss, Constructing NARMAX models using ARMAX models,, Int. J. Contr., 58 (1993), 1125.  doi: 10.1080/00207179308923046.  Google Scholar

[10]

T. Johansen and P. Ioannu, Robust adaptive control of minimum phase nonlinear systems,, Adaptive Control Signal Processing, 10 (1996), 61.  doi: 10.1002/(SICI)1099-1115(199601)10:1<61::AID-ACS387>3.0.CO;2-H.  Google Scholar

[11]

L. Karsenti, Adaptive tracking strategy for a class of nonlinear systems,, IEEE Trans. on Aut. Contr., 43 (1998), 1272.   Google Scholar

[12]

M. Krstic and L. Kanellakopoulos, "Nonlinear Adaptive Control Design,", Wiely, (1995).   Google Scholar

[13]

Panteley E. Loria, A. and H. Nijmeijer, Control of chaotic duffin equation with uncertainty in all parameters,, IEEE Trans. on Circuit Sys., 45 (1998), 1252.  doi: 10.1109/81.736558.  Google Scholar

[14]

R. Marino and P. Tomel, Global adaptive feedback control of nonlinear systems: Part II: Nonliear parameterization,, IEEE Trans. Aut. Control, 38 (1993), 17.  doi: 10.1109/9.186309.  Google Scholar

[15]

R. Marino and P. Tomel, "Nonlinear Adaptive Control Design: Geometric, Adaptive and Robust,", Prentic-Hall, (1995).   Google Scholar

[16]

A. Morris and A Montague, Artificial neural networks: Studies in process modeling and control,, Trans. ICHEME, (1994), 3.   Google Scholar

[17]

J. Park and T. Sandberg, Universal approximation using radial function networks,, Neural Comp., 3 (1991), 246.  doi: 10.1162/neco.1991.3.2.246.  Google Scholar

[18]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control,, IEEE Trans. on Sys., (1985), 116.   Google Scholar

[19]

L. Wang, "Adaptive Fuzzy Systems and Control,", Prentice-Hall, (1994).   Google Scholar

[20]

L. Wang and J. Mendel, Back propagation fuzzy system as nonlinear system identifier,, Proc. IEEE Int. Conf. on Fuzzy Systems, (1992), 1409.   Google Scholar

[21]

A. Yesidirek and F. Lewis, Feedback linearization using neural networks,, Automatica, 31 (1995), 1659.  doi: 10.1016/0005-1098(95)00078-B.  Google Scholar

[22]

T. Zhang and C. Hang, Adaptive control of first order systems with nonlinear parameterization,, IEEE Trans. Aut. Control, 45 (2000), 1512.  doi: 10.1109/9.871761.  Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]