• Previous Article
    Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service
  • JIMO Home
  • This Issue
  • Next Article
    A new exact penalty function method for continuous inequality constrained optimization problems
October  2010, 6(4): 911-927. doi: 10.3934/jimo.2010.6.911

Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection

1. 

School of Computer Application, KIIT University, Bhubaneswar - 751 024, India

2. 

Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India

Received  December 2009 Revised  July 2010 Published  September 2010

This paper analyzes a finite buffer bulk arrival queueing system with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrarily and exponentially distributed. Using the supplementary variable and the imbedded Markov chain techniques, we obtain the system length distributions at pre-arrival and arbitrary epochs. We also present Laplace-Stiltjes transform of the actual waiting time distribution in the system. Finally, several performance measures and a variety of numerical results in the form of tables and graphs are discussed.
Citation: Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911
References:
[1]

Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[3]

P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.  doi: 10.1287/opre.23.4.830.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.  doi: 10.1016/j.orl.2005.11.006.  Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.   Google Scholar

[8]

F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.   Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).   Google Scholar

[10]

J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[11]

W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[12]

K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.  doi: 10.1504/IJOR.2008.016162.  Google Scholar

[13]

L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[14]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).   Google Scholar

[15]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).   Google Scholar

[16]

P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206.   Google Scholar

[17]

D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[18]

M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.  doi: 10.1016/j.cie.2008.07.013.  Google Scholar

show all references

References:
[1]

Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[3]

P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.  doi: 10.1287/opre.23.4.830.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.  doi: 10.1016/j.orl.2005.11.006.  Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.   Google Scholar

[8]

F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.   Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).   Google Scholar

[10]

J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[11]

W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[12]

K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.  doi: 10.1504/IJOR.2008.016162.  Google Scholar

[13]

L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[14]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).   Google Scholar

[15]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).   Google Scholar

[16]

P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206.   Google Scholar

[17]

D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[18]

M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.  doi: 10.1016/j.cie.2008.07.013.  Google Scholar

[1]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[2]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[3]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[4]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[5]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[6]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[7]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019007

[8]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[9]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[10]

Wouter Rogiest, Dieter Fiems, Koenraad Laevens, Herwig Bruneel. Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times. Journal of Industrial & Management Optimization, 2010, 6 (3) : 569-585. doi: 10.3934/jimo.2010.6.569

[11]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[12]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[13]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[14]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[15]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[16]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[17]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[18]

Zsolt Saffer, Miklós Telek. Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial & Management Optimization, 2010, 6 (3) : 661-690. doi: 10.3934/jimo.2010.6.661

[19]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[20]

Albert Corominas, Amaia Lusa, Rafael Pastor. Human resource management using working time accounts with expiry of hours. Journal of Industrial & Management Optimization, 2009, 5 (3) : 569-584. doi: 10.3934/jimo.2009.5.569

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]