Citation: |
[1] |
F. J. Albores-Velasco and F. S. Tajonar-Sanabria, Anlysis of the $GI$/$MSP$/$c$/$r$ queueing system, Information Processes, 4 (2004), 46-57. |
[2] |
Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations, Oper. Res. Lett., 33 (2005), 201-209.doi: 10.1016/j.orl.2004.05.006. |
[3] |
A. D. Banik, U. C. Gupta and M. L. Chaudhry, Finite-buffer bulk service queue under Markovian service process: $GI$/$MSP^(a,b)$/$1$/$N$, Stoch. Anal. Appl., 27 (2009), 500-522.doi: 10.1080/07362990902844157. |
[4] |
P. P. Bocharov, Stationary distribution of a finite queue with recurrent flow and Markovian service, Automat. Remote Control, 57 (1996), 1274-1283. |
[5] |
S. Chakravarthy, A finite capacity $GI$/$PH$/$1$ queue with group services, Naval Res. Logist., 39 (1992), 345-357.doi: 10.1002/1520-6750(199204)39:3<345::AID-NAV3220390305>3.0.CO;2-V. |
[6] |
S. Chakravarthy, Analysis of a finite $MAP$/$G$/$1$ queue with group services, Queueing Systems, 13 (1993), 385-407.doi: 10.1007/BF01149262. |
[7] |
M. L. Chaudhry and J. G. C. Templeton, "A First Course in Bulk Queues," John Wiley, New York, 1983. |
[8] |
J. H. Dshalalow, "Frontiers in Queueing: Models and Applications in Sciences and Engineering," CRC press, Boca Raton, FL., 1997. |
[9] |
H. Gold and P. Tran-Gia, Performance analysis of a batch service queue arising out of manufacturing and system modelling, Queueing Systems, 14 (1993), 413-426.doi: 10.1007/BF01158876. |
[10] |
V. Goswami, J. R. Mohanty and S. K. Samanta, Discrete-time bulk-service queues with accessible and non-accessible batches, Appl. Math. Comput., 182 (2006), 898-906.doi: 10.1016/j.amc.2006.04.047. |
[11] |
V. Goswami and K. Sikdar, Discrete-time batch service $GI$/$Geo^(a,b)$/$1$/$N$ queue with accessible and non-accessible batches, Internaional Journal of Mathematics in Operational Research, 2 (2010), 233-257.doi: 10.1504/IJMOR.2010.030818. |
[12] |
W. K. Grassmann, M. I. Taksar and D. P. Heyman, Regenerative analysis and steady state distributions for Markov chains, Oper. Res., 33 (1985), 1107-1116.doi: 10.1287/opre.33.5.1107. |
[13] |
D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, "Fundamentals of Queueing Theory," 4th Edition, John Wiley & Sons, Inc., New York, 2008. |
[14] |
U. C. Gupta and A. D. Banik, Complete analysis of finite and infinite buffer $GI$/$MSP$/$1$ queue - A computational approach, Oper. Res. Lett., 35 (2006), 273-280.doi: 10.1016/j.orl.2006.02.003. |
[15] |
U. C. Gupta and P. V. Laxmi, Analysis of $MAP$/$G^(a,b)$/$1$/$N$ queue, Queueing Systems, 38 (2001), 109-124.doi: 10.1023/A:1010909913320. |
[16] |
G. Hébuterne and C. Rosenberg, Arrival and departure state distributions in the general bulk-service queue, Naval Res. Logist., 46 (1999), 107-118.doi: 10.1002/(SICI)1520-6750(199902)46:1<107::AID-NAV7>3.0.CO;2-Y. |
[17] |
L. Kleinrock, "Queueing Systems - Theory," Vol. I, John Wiley & Sons, Inc., New York, 1975. |
[18] |
D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-7.doi: 10.1080/15326349108807174. |
[19] |
D. M. Lucantoni and V. Ramaswami, Efficient algorithms for solving non-linear matrix equations arising in phase type queues, Comm. Statist. Stochastic Models, 1 (1985), 29-52.doi: 10.1080/15326348508807003. |
[20] |
J. Medhi, "Recent Developments in Bulk Queueing Models," Wiley Eastern, 1984. |
[21] |
M. F. Neuts, A versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.doi: 10.2307/3213143. |
[22] |
M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models," The John Hopkins University Press, Baltimore, 1981. |
[23] |
M. F. Neuts, "Structured Stochastic Matrices of $M$/$G$/$1$ Type and Their Applications," Marcel Dekker, New York, 1989. |
[24] |
R. Sivasamy, A bulk service queue with accessible and non-accessible batches, Opsearch, 27 (1990), 46-54. |
[25] |
R. Sivasamy and N. Pukazhenthi, A discrete time bulk service queue with accessible batch: $(Geo)$/$ NB^{(L,K)}$/$1$, Opsearch, 46 (2009), 321-334.doi: 10.1007/s12597-009-0021-2. |