January  2011, 7(1): 1-18. doi: 10.3934/jimo.2011.7.1

On the admission control and demand management in a two-station tandem production system

1. 

College of Business Administration, Ewha Womans University, Seoul, South Korea

Received  April 2009 Revised  September 2010 Published  January 2011

This paper considers a two-station tandem production system consisting of make-to-stock and make-to-order facilities. The make-to-stock facility produces components which are served for external demands as well as internal make-to-order operations while the make-to-order facility processes customer orders with the option to accept or reject. We address the problem of coordinating the decision of when to accept customer order and when to satisfy component demand that maximizes the total expected discounted profit. To deal with this issue, we present a Markov decision process model of two-station tandem queueing system and characterize the structure of the optimal policy. We investigate the marginal impacts of system parameters on the optimal policy and implement a numerical experiment for comparing the performance between the optimal policy and the static policy with two fixed thresholds.
Citation: Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1
References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896. doi: 10.1287/mnsc.1060.0588. Google Scholar

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287. doi: 10.1111/j.1540-5414.2005.00074.x. Google Scholar

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709. doi: 10.1287/opre.48.5.709.12401. Google Scholar

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008). Google Scholar

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486. doi: 10.1287/mnsc.48.11.1486.263. Google Scholar

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127. doi: 10.1016/j.ejor.2007.12.007. Google Scholar

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093. doi: 10.1287/mnsc.43.8.1093. Google Scholar

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457. doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3. Google Scholar

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42. doi: 10.1287/opre.45.1.42. Google Scholar

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299. doi: 10.1016/0272-6963(95)00029-1. Google Scholar

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687. doi: 10.1287/opre.23.4.687. Google Scholar

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442. doi: 10.1016/j.ejor.2007.09.044. Google Scholar

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419. doi: 10.1007/BF00934355. Google Scholar

[14]

M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005). Google Scholar

[15]

S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705. doi: 10.1109/TAC.1985.1104054. Google Scholar

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156. doi: 10.1016/j.ejor.2007.06.009. Google Scholar

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219. doi: 10.1017/S0269964800004770. Google Scholar

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337. doi: 10.1287/opre.42.2.337. Google Scholar

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622. doi: 10.1016/j.ejor.2004.12.016. Google Scholar

show all references

References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896. doi: 10.1287/mnsc.1060.0588. Google Scholar

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287. doi: 10.1111/j.1540-5414.2005.00074.x. Google Scholar

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709. doi: 10.1287/opre.48.5.709.12401. Google Scholar

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008). Google Scholar

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486. doi: 10.1287/mnsc.48.11.1486.263. Google Scholar

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127. doi: 10.1016/j.ejor.2007.12.007. Google Scholar

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093. doi: 10.1287/mnsc.43.8.1093. Google Scholar

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457. doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3. Google Scholar

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42. doi: 10.1287/opre.45.1.42. Google Scholar

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299. doi: 10.1016/0272-6963(95)00029-1. Google Scholar

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687. doi: 10.1287/opre.23.4.687. Google Scholar

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442. doi: 10.1016/j.ejor.2007.09.044. Google Scholar

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419. doi: 10.1007/BF00934355. Google Scholar

[14]

M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005). Google Scholar

[15]

S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705. doi: 10.1109/TAC.1985.1104054. Google Scholar

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156. doi: 10.1016/j.ejor.2007.06.009. Google Scholar

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219. doi: 10.1017/S0269964800004770. Google Scholar

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337. doi: 10.1287/opre.42.2.337. Google Scholar

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622. doi: 10.1016/j.ejor.2004.12.016. Google Scholar

[1]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[2]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[3]

Madhu Jain, Sudeep Singh Sanga. Admission control for finite capacity queueing model with general retrial times and state-dependent rates. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-25. doi: 10.3934/jimo.2019073

[4]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[5]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial & Management Optimization, 2019, 15 (2) : 445-464. doi: 10.3934/jimo.2018050

[6]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[7]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[8]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[9]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[10]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[11]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[12]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

[13]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[14]

Harald Held, Gabriela Martinez, Philipp Emanuel Stelzig. Stochastic programming approach for energy management in electric microgrids. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 241-267. doi: 10.3934/naco.2014.4.241

[15]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[16]

Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1393-1408. doi: 10.3934/jimo.2015.11.1393

[17]

A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429-444. doi: 10.3934/jimo.2007.3.429

[18]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[19]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[20]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]