• Previous Article
    A trust-region filter-SQP method for mathematical programs with linear complementarity constraints
  • JIMO Home
  • This Issue
  • Next Article
    Global convergence of an inexact operator splitting method for monotone variational inequalities
October  2011, 7(4): 1027-1039. doi: 10.3934/jimo.2011.7.1027

Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems

1. 

Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27606, United States

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received  October 2010 Revised  July 2011 Published  August 2011

In this paper, we study a mixed integer constrained quadratic programming problem. This problem is NP-Hard. By reformulating the problem to a box constrained quadratic programming and solving the reformulated problem, we can obtain a global optimal solution of a sub-class of the original problem. The reformulated problem may not be convex and may not be solvable in polynomial time. Then we propose a solvability condition for the reformulated problem, and discuss methods to construct a solvable reformulation for the original problem. The reformulation methods identify a solvable subclass of the mixed integer constrained quadratic programming problem.
Citation: Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027
References:
[1]

K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zero-one quadratic optimization,, Math. Program, 91 (2001), 49.   Google Scholar

[2]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses: Theory and Applications," 2nd edition,, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (2003).   Google Scholar

[3]

A. Billionnet and F. Calmels, Linear programming for the 0-1 quadratic knapsack problem,, European Journal of Operational Research, 92 (1996), 310.  doi: 10.1016/0377-2217(94)00229-0.  Google Scholar

[4]

A. Billionnet, A. Faye and E. Soutif, A new upper bound for the 0-1 quadratic knapsack problem,, European Journal of Operational Research, 113 (1999), 664.  doi: 10.1016/S0377-2217(97)00414-1.  Google Scholar

[5]

D. Bienstock, Computational study of a family of mixed-integer quadratic programming problems,, Math. Program, 74 (1996), 121.  doi: 10.1007/BF02592208.  Google Scholar

[6]

I. M. Bomze, Global optimization: A quadratic programming perspective,, in, 1989 (2010), 1.   Google Scholar

[7]

I. M. Bomze and F. Jarre, A note on Burer's copositive representation of mixed-binary QPs,, Optimization Letter, 4 (2010), 465.  doi: 10.1007/s11590-010-0174-1.  Google Scholar

[8]

S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Math. Program., 120 (2009), 479.  doi: 10.1007/s10107-008-0223-z.  Google Scholar

[9]

S. Bundfuss and M. Dür, "An Adaptive Linear Approximation Algorithm for Copositive Programs,", Manuscript, (2008).   Google Scholar

[10]

S.-C. Fang, D. Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problems,, Journal of Industrial and Management Optimization, 4 (2008), 125.   Google Scholar

[11]

D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127.  doi: 10.1023/A:1026537630859.  Google Scholar

[12]

D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, Available from: \url{http://www.math.vt.edu/people/gao/papers/focapo08.pdf}., ().   Google Scholar

[13]

M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness,", A Series of Books in the Mathematical Sciences, (1979).   Google Scholar

[14]

G. T. Herman, "Image Reconstruction from Projections: The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics. Academic Press, (1980).   Google Scholar

[15]

V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Math. Program., 110 (2007), 521.  doi: 10.1007/s10107-006-0012-5.  Google Scholar

[16]

E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optim., 12 (2002), 875.  doi: 10.1137/S1052623401383248.  Google Scholar

[17]

C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, working paper, (2010).   Google Scholar

[18]

C. Lu, Z. Wang, W. Xing and S.-C. Fang, Extended canonical duality and conic programming for solving 0-1 quadratic programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 779.  doi: 10.3934/jimo.2010.6.779.  Google Scholar

[19]

C. Lemaréchal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian viewpoint,, in, 54 (2001), 119.   Google Scholar

[20]

J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM J. Optimization, 11 (): 796.  doi: 10.1137/S1052623400366802.  Google Scholar

[21]

P. Lötstedt, Solving the minimal least squares problem subject to bounds on the variables,, BIT, 24 (1984), 206.   Google Scholar

[22]

P. Parrilo, "Structured Semidefinite Programs and Semi-Algebraic Geometry Methods in Robustness and Optimization,", Ph.D. Thesis, (2000).   Google Scholar

[23]

J. F. Strum and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.  doi: 10.1287/moor.28.2.246.14485.  Google Scholar

[24]

X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, Available from: \url{http://www.optimization-online.org/DB_FILE/2010/01/2512.pdf}., ().   Google Scholar

[25]

Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213.  doi: 10.3934/jimo.2008.4.213.  Google Scholar

[26]

L. F. Zuluage, J. Vera and J. Peña, LMI approximations for cones of positive semidefinite forms,, SIAM J. Optimization, 16 (2006), 1076.   Google Scholar

show all references

References:
[1]

K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zero-one quadratic optimization,, Math. Program, 91 (2001), 49.   Google Scholar

[2]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses: Theory and Applications," 2nd edition,, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (2003).   Google Scholar

[3]

A. Billionnet and F. Calmels, Linear programming for the 0-1 quadratic knapsack problem,, European Journal of Operational Research, 92 (1996), 310.  doi: 10.1016/0377-2217(94)00229-0.  Google Scholar

[4]

A. Billionnet, A. Faye and E. Soutif, A new upper bound for the 0-1 quadratic knapsack problem,, European Journal of Operational Research, 113 (1999), 664.  doi: 10.1016/S0377-2217(97)00414-1.  Google Scholar

[5]

D. Bienstock, Computational study of a family of mixed-integer quadratic programming problems,, Math. Program, 74 (1996), 121.  doi: 10.1007/BF02592208.  Google Scholar

[6]

I. M. Bomze, Global optimization: A quadratic programming perspective,, in, 1989 (2010), 1.   Google Scholar

[7]

I. M. Bomze and F. Jarre, A note on Burer's copositive representation of mixed-binary QPs,, Optimization Letter, 4 (2010), 465.  doi: 10.1007/s11590-010-0174-1.  Google Scholar

[8]

S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Math. Program., 120 (2009), 479.  doi: 10.1007/s10107-008-0223-z.  Google Scholar

[9]

S. Bundfuss and M. Dür, "An Adaptive Linear Approximation Algorithm for Copositive Programs,", Manuscript, (2008).   Google Scholar

[10]

S.-C. Fang, D. Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problems,, Journal of Industrial and Management Optimization, 4 (2008), 125.   Google Scholar

[11]

D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127.  doi: 10.1023/A:1026537630859.  Google Scholar

[12]

D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, Available from: \url{http://www.math.vt.edu/people/gao/papers/focapo08.pdf}., ().   Google Scholar

[13]

M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness,", A Series of Books in the Mathematical Sciences, (1979).   Google Scholar

[14]

G. T. Herman, "Image Reconstruction from Projections: The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics. Academic Press, (1980).   Google Scholar

[15]

V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Math. Program., 110 (2007), 521.  doi: 10.1007/s10107-006-0012-5.  Google Scholar

[16]

E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optim., 12 (2002), 875.  doi: 10.1137/S1052623401383248.  Google Scholar

[17]

C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, working paper, (2010).   Google Scholar

[18]

C. Lu, Z. Wang, W. Xing and S.-C. Fang, Extended canonical duality and conic programming for solving 0-1 quadratic programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 779.  doi: 10.3934/jimo.2010.6.779.  Google Scholar

[19]

C. Lemaréchal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian viewpoint,, in, 54 (2001), 119.   Google Scholar

[20]

J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM J. Optimization, 11 (): 796.  doi: 10.1137/S1052623400366802.  Google Scholar

[21]

P. Lötstedt, Solving the minimal least squares problem subject to bounds on the variables,, BIT, 24 (1984), 206.   Google Scholar

[22]

P. Parrilo, "Structured Semidefinite Programs and Semi-Algebraic Geometry Methods in Robustness and Optimization,", Ph.D. Thesis, (2000).   Google Scholar

[23]

J. F. Strum and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.  doi: 10.1287/moor.28.2.246.14485.  Google Scholar

[24]

X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, Available from: \url{http://www.optimization-online.org/DB_FILE/2010/01/2512.pdf}., ().   Google Scholar

[25]

Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213.  doi: 10.3934/jimo.2008.4.213.  Google Scholar

[26]

L. F. Zuluage, J. Vera and J. Peña, LMI approximations for cones of positive semidefinite forms,, SIAM J. Optimization, 16 (2006), 1076.   Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[8]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[9]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[11]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[12]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

[13]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[14]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[15]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[16]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[17]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[18]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[19]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]