January  2011, 7(1): 139-156. doi: 10.3934/jimo.2011.7.139

Optimal consumption and investment under irrational beliefs

1. 

School of Business and Management, Hong Kong University of Science and Technology, Hong Kong, China

2. 

School of Economics and Management, Tsinghua University, Beijing, China

Received  March 2010 Revised  October 2010 Published  January 2011

In this paper, we study how irrationality affects the investor's consumption and investment decisions. We build a continuous-time financial model, where an irrational investor determines his consumption and investment according to an exogenous price process. The main results are as follows. First, compared with a rational investor, an optimistic irrational investor tends to consume more, while a pessimistic irrational investor tends to consume less. Second, the more irrational the investor, the more volatile his consumption. Third, the extremely irrational investor can get more ex ante expected utility than his rational counterpart, no matter he is optimistic or pessimistic.
Citation: Lei Sun, Lihong Zhang. Optimal consumption and investment under irrational beliefs. Journal of Industrial & Management Optimization, 2011, 7 (1) : 139-156. doi: 10.3934/jimo.2011.7.139
References:
[1]

Journal of Political Economy, 58 (1950), 211-221. doi: 10.1086/256940.  Google Scholar

[2]

Journal of Finance, 41 (1986), 529-543. doi: 10.2307/2328481.  Google Scholar

[3]

Journal of Political Economy, 81 (1973), 637-654. doi: 10.1086/260062.  Google Scholar

[4]

Econometrica, 74 (2006), 929-966. doi: 10.1111/j.1468-0262.2006.00691.x.  Google Scholar

[5]

Journal of Business, 64 (1991), 1-19. Google Scholar

[6]

Working paper, Hass School of Business, UC Berkeley, 2007. Google Scholar

[7]

University of Chicago Press, Chicago, 1953. Google Scholar

[8]

Econometrica, 55 (1987), 587-613. doi: 10.2307/1913601.  Google Scholar

[9]

Journal of Economic Theory, 20 (1979), 381-408. doi: 10.1016/0022-0531(79)90043-7.  Google Scholar

[10]

Journal of Financial Economics, 81 (2006), 311-338. doi: 10.1016/j.jfineco.2005.05.006.  Google Scholar

[11]

Springer-Verlag, New York, 1998.  Google Scholar

[12]

Journal of Finance, 61 (2006), 195-229. doi: 10.1111/j.1540-6261.2006.00834.x.  Google Scholar

[13]

Review of Economics and Statistics, 47 (1965), 13-37. doi: 10.2307/1924119.  Google Scholar

[14]

Econometrica, 41 (1973), 867-887. doi: 10.2307/1913811.  Google Scholar

[15]

Journal of Economic Theory, 13 (1976), 341-360. doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

Econometrica, 68 (2000), 1303-1341. doi: 10.1111/1468-0262.00163.  Google Scholar

[17]

Journal of Finance, 19 (1964), 425-442. doi: 10.2307/2977928.  Google Scholar

show all references

References:
[1]

Journal of Political Economy, 58 (1950), 211-221. doi: 10.1086/256940.  Google Scholar

[2]

Journal of Finance, 41 (1986), 529-543. doi: 10.2307/2328481.  Google Scholar

[3]

Journal of Political Economy, 81 (1973), 637-654. doi: 10.1086/260062.  Google Scholar

[4]

Econometrica, 74 (2006), 929-966. doi: 10.1111/j.1468-0262.2006.00691.x.  Google Scholar

[5]

Journal of Business, 64 (1991), 1-19. Google Scholar

[6]

Working paper, Hass School of Business, UC Berkeley, 2007. Google Scholar

[7]

University of Chicago Press, Chicago, 1953. Google Scholar

[8]

Econometrica, 55 (1987), 587-613. doi: 10.2307/1913601.  Google Scholar

[9]

Journal of Economic Theory, 20 (1979), 381-408. doi: 10.1016/0022-0531(79)90043-7.  Google Scholar

[10]

Journal of Financial Economics, 81 (2006), 311-338. doi: 10.1016/j.jfineco.2005.05.006.  Google Scholar

[11]

Springer-Verlag, New York, 1998.  Google Scholar

[12]

Journal of Finance, 61 (2006), 195-229. doi: 10.1111/j.1540-6261.2006.00834.x.  Google Scholar

[13]

Review of Economics and Statistics, 47 (1965), 13-37. doi: 10.2307/1924119.  Google Scholar

[14]

Econometrica, 41 (1973), 867-887. doi: 10.2307/1913811.  Google Scholar

[15]

Journal of Economic Theory, 13 (1976), 341-360. doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

Econometrica, 68 (2000), 1303-1341. doi: 10.1111/1468-0262.00163.  Google Scholar

[17]

Journal of Finance, 19 (1964), 425-442. doi: 10.2307/2977928.  Google Scholar

[1]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[2]

Yusra Bibi Ruhomally, Muhammad Zaid Dauhoo, Laurent Dumas. A graph cellular automaton with relation-based neighbourhood describing the impact of peer influence on the consumption of marijuana among college-aged youths. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021011

[3]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[4]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[5]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[6]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[10]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[11]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[12]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[13]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[14]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[15]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[16]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[17]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[18]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[19]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[20]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]