January  2011, 7(1): 157-174. doi: 10.3934/jimo.2011.7.157

Nonlinear augmented Lagrangian for nonconvex multiobjective optimization

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China, China

2. 

Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Received  October 2009 Revised  October 2010 Published  January 2011

In this paper, based on the ordering relations induced by a pointed, closed and convex cone with a nonempty interior, we propose a nonlinear augmented Lagrangian dual scheme for a nonconvex multiobjective optimization problem by applying a class of vector-valued nonlinear augmented Lagrangian penalty functions. We establish the weak and strong duality results, necessary and sufficient conditions for uniformly exact penalization and exact penalization in the framework of nonlinear augmented Lagrangian. Our results include several ones in the literature as special cases.
Citation: Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial & Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157
References:
[1]

R. S. Burachik and A. Rubinov, Abstract convexity and augmented Lagrangians,, SIAM J. Optim., 18 (2007), 413. doi: 10.1137/050647621. Google Scholar

[2]

G. Y. Chen, X. X. Huang and X. Q. Yang, "Vector Optimization: Set-Valued and Variational Analysis,", Springer, (2005). Google Scholar

[3]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley and Sons, (1983). Google Scholar

[4]

X. X. Huang and X. Q. Yang, A unified augmented Lagrangian approach to duality and exact penalization,, Math. Oper. Res., 28 (2003), 533. doi: 10.1287/moor.28.3.533.16395. Google Scholar

[5]

X. X. Huang and X. Q. Yang, Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization,, SIAM J. Optim., 13 (2002), 675. doi: 10.1137/S1052623401384850. Google Scholar

[6]

X. X. Huang and X. Q. Yang, Duality for multiobjective optimization via nonlinear Lagrangian functions,, J. Optim. Theory Appl., 120 (2004), 111. doi: 10.1023/B:JOTA.0000012735.86699.a1. Google Scholar

[7]

X. X. Huang and X. Q. Yang, Duality and exact penalization for vector optimization via augmented Lagrangian,, J. Optim. Theory Appl., 111 (2001), 615. doi: 10.1023/A:1012654128753. Google Scholar

[8]

X. X. Huang, X. Q. Yang and K. L. Teo, Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints,, J. Global Optim., 36 (2006), 637. doi: 10.1007/s10898-004-1937-y. Google Scholar

[9]

J. Jahn, "Vector Optimization-Theory, Applications and Extensions,", Springer, (2004). Google Scholar

[10]

P. Q. Khanh, T. H. Nuong and M. Thera, On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians,, Positivity, 3 (1999), 49. doi: 10.1023/A:1009753224825. Google Scholar

[11]

A. Nedić and A. Ozdaglar, Separation of nonconvex sets with general augmenting functions,, Math. Oper. Res., 33 (2008), 587. doi: 10.1287/moor.1070.0296. Google Scholar

[12]

A. Nedić and A. Ozdaglar, A geometric framework for nonconvex optimization duality using augmented Lagrangian functions,, J. Global Optim., 40 (2008), 545. doi: 10.1007/s10898-006-9122-0. Google Scholar

[13]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Springer-Verlag, (1998). doi: 10.1007/978-3-642-02431-3. Google Scholar

[14]

A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function,, Math. Oper. Res., 27 (2002), 775. doi: 10.1287/moor.27.4.775.295. Google Scholar

[15]

A. M. Rubinov and X. Q. Yang, "Lagrange-Type Functions in Constrained Non-Convex Optimization,", Kluwer Academic Publishers, (2003). Google Scholar

[16]

C. Singh, D. Bhatia and N. Rueda, Duality in nonlinear multiobjective programming using augmented Lagrangian functions,, J. Optim. Theory Appl., 88 (1996), 659. doi: 10.1007/BF02192203. Google Scholar

[17]

C. Y. Wang, X. Q. Yang and X. M. Yang, Zero duality gap and convergence of sub-optimal paths for optimization problems via a nonlinear augmented Lagrangian,, (2009) (preprint)., (2009). Google Scholar

[18]

C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths,, J. Optim. Theory Appl., 135 (2007), 85. doi: 10.1007/s10957-007-9225-x. Google Scholar

[19]

X. Q. Yang and X. X. Huang, A nonlinear Lagrangian approach to constrained optimization problems,, SIAM J. Optim., 11 (2001), 1119. doi: 10.1137/S1052623400371806. Google Scholar

[20]

Y. Y. Zhou and X. Q. Yang, Some results about duality and exact penalization,, J. Global Optim., 29 (2004), 497. doi: 10.1023/B:JOGO.0000047916.73871.88. Google Scholar

[21]

Y. Y. Zhou and X. Q. Yang, Augmented Lagrangian function, non-quadratic growth condition and exact penalization,, Oper. Res. Lett., 34 (2006), 127. doi: 10.1016/j.orl.2005.03.008. Google Scholar

[22]

Y. Y. Zhou and X. Q. Yang, Duality and penalization in optimization via an augmented Lagrangian function with applications,, J. Optim. Theory Appl., 140 (2009), 171. doi: 10.1007/s10957-008-9455-6. Google Scholar

show all references

References:
[1]

R. S. Burachik and A. Rubinov, Abstract convexity and augmented Lagrangians,, SIAM J. Optim., 18 (2007), 413. doi: 10.1137/050647621. Google Scholar

[2]

G. Y. Chen, X. X. Huang and X. Q. Yang, "Vector Optimization: Set-Valued and Variational Analysis,", Springer, (2005). Google Scholar

[3]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley and Sons, (1983). Google Scholar

[4]

X. X. Huang and X. Q. Yang, A unified augmented Lagrangian approach to duality and exact penalization,, Math. Oper. Res., 28 (2003), 533. doi: 10.1287/moor.28.3.533.16395. Google Scholar

[5]

X. X. Huang and X. Q. Yang, Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization,, SIAM J. Optim., 13 (2002), 675. doi: 10.1137/S1052623401384850. Google Scholar

[6]

X. X. Huang and X. Q. Yang, Duality for multiobjective optimization via nonlinear Lagrangian functions,, J. Optim. Theory Appl., 120 (2004), 111. doi: 10.1023/B:JOTA.0000012735.86699.a1. Google Scholar

[7]

X. X. Huang and X. Q. Yang, Duality and exact penalization for vector optimization via augmented Lagrangian,, J. Optim. Theory Appl., 111 (2001), 615. doi: 10.1023/A:1012654128753. Google Scholar

[8]

X. X. Huang, X. Q. Yang and K. L. Teo, Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints,, J. Global Optim., 36 (2006), 637. doi: 10.1007/s10898-004-1937-y. Google Scholar

[9]

J. Jahn, "Vector Optimization-Theory, Applications and Extensions,", Springer, (2004). Google Scholar

[10]

P. Q. Khanh, T. H. Nuong and M. Thera, On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians,, Positivity, 3 (1999), 49. doi: 10.1023/A:1009753224825. Google Scholar

[11]

A. Nedić and A. Ozdaglar, Separation of nonconvex sets with general augmenting functions,, Math. Oper. Res., 33 (2008), 587. doi: 10.1287/moor.1070.0296. Google Scholar

[12]

A. Nedić and A. Ozdaglar, A geometric framework for nonconvex optimization duality using augmented Lagrangian functions,, J. Global Optim., 40 (2008), 545. doi: 10.1007/s10898-006-9122-0. Google Scholar

[13]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Springer-Verlag, (1998). doi: 10.1007/978-3-642-02431-3. Google Scholar

[14]

A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function,, Math. Oper. Res., 27 (2002), 775. doi: 10.1287/moor.27.4.775.295. Google Scholar

[15]

A. M. Rubinov and X. Q. Yang, "Lagrange-Type Functions in Constrained Non-Convex Optimization,", Kluwer Academic Publishers, (2003). Google Scholar

[16]

C. Singh, D. Bhatia and N. Rueda, Duality in nonlinear multiobjective programming using augmented Lagrangian functions,, J. Optim. Theory Appl., 88 (1996), 659. doi: 10.1007/BF02192203. Google Scholar

[17]

C. Y. Wang, X. Q. Yang and X. M. Yang, Zero duality gap and convergence of sub-optimal paths for optimization problems via a nonlinear augmented Lagrangian,, (2009) (preprint)., (2009). Google Scholar

[18]

C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths,, J. Optim. Theory Appl., 135 (2007), 85. doi: 10.1007/s10957-007-9225-x. Google Scholar

[19]

X. Q. Yang and X. X. Huang, A nonlinear Lagrangian approach to constrained optimization problems,, SIAM J. Optim., 11 (2001), 1119. doi: 10.1137/S1052623400371806. Google Scholar

[20]

Y. Y. Zhou and X. Q. Yang, Some results about duality and exact penalization,, J. Global Optim., 29 (2004), 497. doi: 10.1023/B:JOGO.0000047916.73871.88. Google Scholar

[21]

Y. Y. Zhou and X. Q. Yang, Augmented Lagrangian function, non-quadratic growth condition and exact penalization,, Oper. Res. Lett., 34 (2006), 127. doi: 10.1016/j.orl.2005.03.008. Google Scholar

[22]

Y. Y. Zhou and X. Q. Yang, Duality and penalization in optimization via an augmented Lagrangian function with applications,, J. Optim. Theory Appl., 140 (2009), 171. doi: 10.1007/s10957-008-9455-6. Google Scholar

[1]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[2]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[3]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[4]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[5]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[6]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[7]

Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495

[8]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[9]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[10]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[11]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[12]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[13]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[14]

Xinmin Yang, Jin Yang, Heung Wing Joseph Lee. Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 525-530. doi: 10.3934/jimo.2013.9.525

[15]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[16]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[17]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[18]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[19]

Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018136

[20]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (6)

[Back to Top]