
Previous Article
A differential equation method for solving box constrained variational inequality problems
 JIMO Home
 This Issue

Next Article
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization
2D analysis based iterative learning control for linear discretetime systems with time delay
1.  Department of Computer, Chongqing University, Chongqing 400044, China, China 
2.  Texas A&M University at Qatar, Doha, P.O.Box 5825 
References:
[1] 
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203. Google Scholar 
[2] 
Y. Chen and Z. Gong, Analysis of a highorder iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S00051098(97)001969. Google Scholar 
[3] 
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ipcta:20000138. Google Scholar 
[4] 
T. W. S. Chow and Yong F, An iterative learning control method for continuoustime systems based on 2D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. Google Scholar 
[5] 
X. Fang, P. Chen and J. Shao, Optimal higherorder iterative learning control of discretetime linear systems,, IEE Pro.Control Theory Appl., 152 (2005). Google Scholar 
[6] 
Y. Fang and T. W. S. Chow, 2D Analysis for iterative learning control for discretetime systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). Google Scholar 
[7] 
Y. Fang and T. W. S. Chow, Iterative learning control of linear discretetime multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S00051098(98)000910. Google Scholar 
[8] 
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2D dicrete linear systems,, IEE Proc.Circuits Devices Syst., 148 (2001). Google Scholar 
[9] 
Z. Geng, R. Carroll and J. Xies, Twodimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571. Google Scholar 
[10] 
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970. Google Scholar 
[11] 
FengHsiag. Hsiao and K. yeh, Robust Dstability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. Google Scholar 
[12] 
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discretetime dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. Google Scholar 
[13] 
T. Kaczorek, "TwoDimensional Linear Systems,", New York: SpringerVerlag, (1985). Google Scholar 
[14] 
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321. Google Scholar 
[15] 
X. D. Li and T. W. S Chow, 2D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). Google Scholar 
[16] 
X. D. Li and T. W. S Chow, Iterative learning control for linear timevariant discrete systems based on 2D system theory,, IEE Proc.Control Theory Appl., 152 (2005). Google Scholar 
[17] 
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: SpringerVerlag, (1993). Google Scholar 
[18] 
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE ProceedingsControl Theory and Applications, 145 (1998), 507. doi: 10.1049/ipcta:19982409. Google Scholar 
[19] 
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. Google Scholar 
[20] 
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/00051098(91)90066B. Google Scholar 
[21] 
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s117680050046x. Google Scholar 
[22] 
B. Zhang and G. Tang, PDtype iterative learning control for nonlinear timedelay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S10044132(06)601035. Google Scholar 
show all references
References:
[1] 
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203. Google Scholar 
[2] 
Y. Chen and Z. Gong, Analysis of a highorder iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S00051098(97)001969. Google Scholar 
[3] 
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ipcta:20000138. Google Scholar 
[4] 
T. W. S. Chow and Yong F, An iterative learning control method for continuoustime systems based on 2D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. Google Scholar 
[5] 
X. Fang, P. Chen and J. Shao, Optimal higherorder iterative learning control of discretetime linear systems,, IEE Pro.Control Theory Appl., 152 (2005). Google Scholar 
[6] 
Y. Fang and T. W. S. Chow, 2D Analysis for iterative learning control for discretetime systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). Google Scholar 
[7] 
Y. Fang and T. W. S. Chow, Iterative learning control of linear discretetime multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S00051098(98)000910. Google Scholar 
[8] 
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2D dicrete linear systems,, IEE Proc.Circuits Devices Syst., 148 (2001). Google Scholar 
[9] 
Z. Geng, R. Carroll and J. Xies, Twodimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571. Google Scholar 
[10] 
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970. Google Scholar 
[11] 
FengHsiag. Hsiao and K. yeh, Robust Dstability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. Google Scholar 
[12] 
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discretetime dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. Google Scholar 
[13] 
T. Kaczorek, "TwoDimensional Linear Systems,", New York: SpringerVerlag, (1985). Google Scholar 
[14] 
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321. Google Scholar 
[15] 
X. D. Li and T. W. S Chow, 2D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). Google Scholar 
[16] 
X. D. Li and T. W. S Chow, Iterative learning control for linear timevariant discrete systems based on 2D system theory,, IEE Proc.Control Theory Appl., 152 (2005). Google Scholar 
[17] 
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: SpringerVerlag, (1993). Google Scholar 
[18] 
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE ProceedingsControl Theory and Applications, 145 (1998), 507. doi: 10.1049/ipcta:19982409. Google Scholar 
[19] 
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. Google Scholar 
[20] 
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/00051098(91)90066B. Google Scholar 
[21] 
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s117680050046x. Google Scholar 
[22] 
B. Zhang and G. Tang, PDtype iterative learning control for nonlinear timedelay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S10044132(06)601035. Google Scholar 
[1] 
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2D EricksenLeslie system. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 919941. doi: 10.3934/dcdsb.2016.21.919 
[2] 
Lingbing He. On the global smooth solution to 2D fluid/particle system. Discrete & Continuous Dynamical Systems  A, 2010, 27 (1) : 237263. doi: 10.3934/dcds.2010.27.237 
[3] 
H. T. Banks, R.C. Smith. Feedback control of noise in a 2D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems  A, 1995, 1 (1) : 119149. doi: 10.3934/dcds.1995.1.119 
[4] 
Roberto Triggiani. Stability enhancement of a 2D linear NavierStokes channel flow by a 2D, wallnormal boundary controller. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 279314. doi: 10.3934/dcdsb.2007.8.279 
[5] 
Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discretetime system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020106 
[6] 
Melody Dodd, Jennifer L. Mueller. A realtime Dbar algorithm for 2D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 10131031. doi: 10.3934/ipi.2014.8.1013 
[7] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of twodimensional piecewise linear maps: Abundance of 2D strange attractors. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 941966. doi: 10.3934/dcds.2018040 
[8] 
Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447463. doi: 10.3934/eect.2018022 
[9] 
Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719744. doi: 10.3934/cpaa.2017035 
[10] 
Chao Deng, Tong Li. Global existence and large time behavior of a 2D KellerSegel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems  B, 2019, 24 (1) : 183195. doi: 10.3934/dcdsb.2018093 
[11] 
Tian Ma, Shouhong Wang. Global structure of 2D incompressible flows. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 431445. doi: 10.3934/dcds.2001.7.431 
[12] 
Jeanfrançois Coulombel, Paolo Secchi. Uniqueness of 2D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 14391450. doi: 10.3934/cpaa.2009.8.1439 
[13] 
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2D turbulence. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13271351. doi: 10.3934/dcds.2010.27.1327 
[14] 
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2D Burgers equation. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 299313. doi: 10.3934/dcds.2009.23.299 
[15] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[16] 
Alex Bombrun, JeanBaptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2body control system. Conference Publications, 2007, 2007 (Special) : 122129. doi: 10.3934/proc.2007.2007.122 
[17] 
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109125. doi: 10.3934/naco.2013.3.109 
[18] 
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 00. doi: 10.3934/naco.2019044 
[19] 
Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multiinterference. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020104 
[20] 
Jérome Lohéac, JeanFrançois Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185208. doi: 10.3934/mcrf.2013.3.185 
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]