-
Previous Article
A differential equation method for solving box constrained variational inequality problems
- JIMO Home
- This Issue
-
Next Article
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization
2-D analysis based iterative learning control for linear discrete-time systems with time delay
1. | Department of Computer, Chongqing University, Chongqing 400044, China, China |
2. | Texas A&M University at Qatar, Doha, P.O.Box 5825 |
References:
[1] |
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning, J. Robot Syst., 1 (1984), 123-140.
doi: 10.1002/rob.4620010203. |
[2] |
Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica, 34 (1998), 345-353.
doi: 10.1016/S0005-1098(97)00196-9. |
[3] |
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems, IEE, Proc. Contr. Theory Appl., 147 (2000), 217-223.
doi: 10.1049/ip-cta:20000138. |
[4] |
T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory, IEEE Trans. Circuits Syst., I Fundam. Theory Appl., 45 (1998), 683-689. |
[5] |
X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems, IEE Pro.-Control Theory Appl., 152 (2005). |
[6] |
Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions, IEEE Tran. Automat. Contr, 50 (2003). |
[7] |
Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system, Aoutmatica, 34 (1998), 1459-1462.
doi: 10.1016/S0005-1098(98)00091-0. |
[8] |
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems, IEE Proc.-Circuits Devices Syst., 148 (2001). |
[9] |
Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system, Int. J. Contr., 52 (1990), 833-862.
doi: 10.1080/00207179008953571. |
[10] |
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory, J. Intell. Robot. Syst., (1990), 17-26.
doi: 10.1007/BF00368970. |
[11] |
Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays, IEEE Tencon, (1993), 451-454. |
[12] |
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems, Proc. Inst. Elect. Eng. D, 138 (1991), 139-144. |
[13] |
T. Kaczorek, "Two-Dimensional Linear Systems," New York: Springer Verlag, 1985. |
[14] |
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory, IEEE Trans. Automat. Contr., 38 (1993), 121-125.
doi: 10.1109/9.186321. |
[15] |
X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay, IEEE Tran. Automat. Contr, 52 (2005). |
[16] |
X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory, IEE Proc.-Control Theory Appl., 152 (2005). |
[17] |
K. L. Moore, "Iterative Learning Control for Deterministic Systems," New York: Springer-Verlag, 1993. |
[18] |
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay, IEE Proceedings-Control Theory and Applications, 145 (1998), 507-512.
doi: 10.1049/ip-cta:19982409. |
[19] |
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays, IEEE, 0-7803-7761, 2003. |
[20] |
T. Sugie and T. Ono, An iterative learning control law for dynamic systems, Automatica, 27 (1991), 729.
doi: 10.1016/0005-1098(91)90066-B. |
[21] |
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems, Journal of Control Theory and Application, 3 (2005), 259-265.
doi: 10.1007/s11768-005-0046-x. |
[22] |
B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance, Journal of System Engineering and Electronic, 17 (2006), 600-605.
doi: 10.1016/S1004-4132(06)60103-5. |
show all references
References:
[1] |
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning, J. Robot Syst., 1 (1984), 123-140.
doi: 10.1002/rob.4620010203. |
[2] |
Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica, 34 (1998), 345-353.
doi: 10.1016/S0005-1098(97)00196-9. |
[3] |
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems, IEE, Proc. Contr. Theory Appl., 147 (2000), 217-223.
doi: 10.1049/ip-cta:20000138. |
[4] |
T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory, IEEE Trans. Circuits Syst., I Fundam. Theory Appl., 45 (1998), 683-689. |
[5] |
X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems, IEE Pro.-Control Theory Appl., 152 (2005). |
[6] |
Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions, IEEE Tran. Automat. Contr, 50 (2003). |
[7] |
Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system, Aoutmatica, 34 (1998), 1459-1462.
doi: 10.1016/S0005-1098(98)00091-0. |
[8] |
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems, IEE Proc.-Circuits Devices Syst., 148 (2001). |
[9] |
Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system, Int. J. Contr., 52 (1990), 833-862.
doi: 10.1080/00207179008953571. |
[10] |
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory, J. Intell. Robot. Syst., (1990), 17-26.
doi: 10.1007/BF00368970. |
[11] |
Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays, IEEE Tencon, (1993), 451-454. |
[12] |
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems, Proc. Inst. Elect. Eng. D, 138 (1991), 139-144. |
[13] |
T. Kaczorek, "Two-Dimensional Linear Systems," New York: Springer Verlag, 1985. |
[14] |
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory, IEEE Trans. Automat. Contr., 38 (1993), 121-125.
doi: 10.1109/9.186321. |
[15] |
X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay, IEEE Tran. Automat. Contr, 52 (2005). |
[16] |
X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory, IEE Proc.-Control Theory Appl., 152 (2005). |
[17] |
K. L. Moore, "Iterative Learning Control for Deterministic Systems," New York: Springer-Verlag, 1993. |
[18] |
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay, IEE Proceedings-Control Theory and Applications, 145 (1998), 507-512.
doi: 10.1049/ip-cta:19982409. |
[19] |
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays, IEEE, 0-7803-7761, 2003. |
[20] |
T. Sugie and T. Ono, An iterative learning control law for dynamic systems, Automatica, 27 (1991), 729.
doi: 10.1016/0005-1098(91)90066-B. |
[21] |
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems, Journal of Control Theory and Application, 3 (2005), 259-265.
doi: 10.1007/s11768-005-0046-x. |
[22] |
B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance, Journal of System Engineering and Electronic, 17 (2006), 600-605.
doi: 10.1016/S1004-4132(06)60103-5. |
[1] |
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919 |
[2] |
Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237 |
[3] |
H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119 |
[4] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003 |
[5] |
Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279 |
[6] |
Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106 |
[7] |
Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030 |
[8] |
Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems and Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013 |
[9] |
Zhixian Yu, Rong Yuan, Shaohua Gan. Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4815-4838. doi: 10.3934/dcdsb.2020314 |
[10] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040 |
[11] |
Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations and Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022 |
[12] |
Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035 |
[13] |
Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431 |
[14] |
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327 |
[15] |
Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439 |
[16] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[17] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
[18] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[19] |
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 |
[20] |
Alex Bombrun, Jean-Baptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2-body control system. Conference Publications, 2007, 2007 (Special) : 122-129. doi: 10.3934/proc.2007.2007.122 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]