- Previous Article
- JIMO Home
- This Issue
-
Next Article
New heuristics for solving the economic lot scheduling problem with reworks
Algorithms for bicriteria minimization in the permutation flow shop scheduling problem
1. | Departamento de Fundamentos de Economía, Universidad de Alcalá, Alcalá de Henares, Madrid, 28802, Spain |
References:
[1] |
J. Arroyo and V. Armentano, Genetic local search for multi-objective flowshop scheduling problems, Eur. J. Oper. Res., 167 (2005), 717-38.
doi: 10.1016/j.ejor.2004.07.017. |
[2] |
T. P. Bagchi, "Multiobjective Scheduling by Genetic Algorithms," Kluwer Academic Publishers, Dordrecht, 1999. |
[3] |
P. C. Chang, S. H. Chen and C. H. Liu, Sub-population genetic algorithm with mining gene structures for multiobjective flowshop scheduling problems, Expert. Syst. Appl., 33 (2007), 762-77.
doi: 10.1016/j.eswa.2006.06.019. |
[4] |
P. C. Chang, J. C. Hsieh and S. G. Lin, The development of gradual priority weighting approach for the multi-objective flowshop scheduling problem, Int. J. Prod. Econ., 79 (2002), 171-83.
doi: 10.1016/S0925-5273(02)00141-X. |
[5] |
P. Czyzak and A. Jaszkiewicz, Pareto Simulated Annealing-a metaheuristic technique for multiple objective combinatorial optimization, J. Multicriteria Dec. Anal., 7 (1998), 34-47.
doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6. |
[6] |
R. L. Daniels and R. J. Chambers, Multiobjective flow-shop scheduling, Nav. Res. Log., 37 (1990), 981-995.
doi: 10.1002/1520-6750(199012)37:6<981::AID-NAV3220370617>3.0.CO;2-H. |
[7] |
J. Dorn, M. Girsch, G. Skele and W. Slany, Comparison of iterative improvement techniques for schedule optimization, Eur. J. Oper. Res., 94 (1996), 349-361.
doi: 10.1016/0377-2217(95)00162-X. |
[8] |
M. Ehrgott and X. Gandibleux, Multiobjective Combinatorial Optimization: Theory, Methodology, and Applications, in "Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys" (eds. M. Ehrgott and X. Gandibleux), Kluwer Academic Publishers, Boston, (2002), 369-444. |
[9] |
V. A. Emelichev and V. A. Perepelista, On cardinality of the set of alternatives in discrete many-criterion problems, Discrete Math. Appl., 2 (1992), 461-471.
doi: 10.1515/dma.1992.2.5.461. |
[10] |
J. M. Framinan, R. Leisten and R. Ruiz-Usano, Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation, Eur. J. Oper. Res., 141 (2002), 559-569.
doi: 10.1016/S0377-2217(01)00278-8. |
[11] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," Freeman, San Francisco, 1979. |
[12] |
M. Geiger, On operators and search space topology in multi-objective flow shop scheduling, Eur. J. Oper. Res., 181 (2007), 195-206.
doi: 10.1016/j.ejor.2006.06.010. |
[13] |
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 5 (1979), 287-326.
doi: 10.1016/S0167-5060(08)70356-X. |
[14] |
J. N. D. Gupta, V. R. Neppalli and F. Werner, Minimizing total flow time in a two-machine flowshop problem with minimum makespan, Int. J. Prod. Econ., 69 (2001), 323-338.
doi: 10.1016/S0925-5273(00)00039-6. |
[15] |
J. C. Ho and Y. L. Chang, A new heuristic for the n-job, m-machine flowshop problem, Eur. J. Oper. Res., 52 (1991), 194-202.
doi: 10.1016/0377-2217(91)90080-F. |
[16] |
J. A. Hoogeveen, "Single-Machine Bicriteria Scheduling," Ph.D thesis, The Netherlands Technology University in Amsterdam, 1992. |
[17] |
G. Huang and A. Lim, Fragmental optimization on the 2-machine bicriteria flowshop scheduling problem, in "Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence," (1992), 33-75. |
[18] |
E. Ignall and L. E. Schrage, Application of the branch-and-bound technique to some flow-shop scheduling problems, Oper. Res., 13 (1965), 400-412.
doi: 10.1287/opre.13.3.400. |
[19] |
H. Ishibuchi and T. Murata, A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE T. Syst. Man. Cy. C., 28 (1998), 392-403.
doi: 10.1109/5326.704576. |
[20] |
A. Jaszkiewicz, A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm, Annals of Operations Research, 13 (2004), 135-158.
doi: 10.1023/B:ANOR.0000039516.50069.5b. |
[21] |
S. M. Johnson, Optimal two- and three-stage production schedules with setup times included, Nav. Res. Log., 1 (1954), 61-68.
doi: 10.1002/nav.3800010110. |
[22] |
D. F. Jones, S. K. Mirrazavi and M. Tamiz, Multi-objective meta-heuristics: An overview of the current state of the art, Eur. J. Oper. Res., 137 (2002), 1-9.
doi: 10.1016/S0377-2217(01)00123-0. |
[23] |
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680.
doi: 10.1126/science.220.4598.671. |
[24] |
J. Knowles and D. Corne, On Metrics Comparing Nondominated Sets, in "Proceedings of the 2002 Congress on Evolutionary Computation Conference," IEEE Press, (2002), 711-716. |
[25] |
J. D. Landa-Silva, E. K. Burke and S. Petrovic, An introduction to multiobjective metaheuristics for scheduling and timetabling, Lect. Notes Econ. Math., 535 (2004), 91-129.
doi: 10.1007/978-3-642-17144-4_4. |
[26] |
C. J. Liao, W. C. Yu and C. B. Joe, Bicriterion scheduling in the two-machine flowshop, J. Oper. Res. Soc., 48 (1997), 929-935. |
[27] |
G. B. McMahon, Optimal production schedules for flow shop, Can. Oper. Res. Soc. J., 7 (1969), 141-151. |
[28] |
G. Minella, R. Ruiz and M. Ciavotta, A review and evaluation of multi-objective algorithms for the flowshop scheduling problem, Informs. Journal on Computing, 20 (2007), 451-471.
doi: 10.1287/ijoc.1070.0258. |
[29] |
E. Mokotoff, Multi-objective simulated annealing for permutation flow shop problems, in "Computational Intelligence in Flow Shop and Job Shop Scheduling" (ed. U. Chakraborty), Springer Verlag, (2009), 101-150.
doi: 10.1007/978-3-642-02836-6_4. |
[30] |
T. Murata, H. Ishibuchi and H. Tanaka, Multi-objective genetic algorithm and its applications to flowshop scheduling, Comp. Ind. Eng., 30 (1996), 957-968.
doi: 10.1016/0360-8352(96)00045-9. |
[31] |
A. Nagar, S. S. Heragu and J. Haddock, A branch and bound approach for a two machine flowshop scheduling problem, J. Oper. Res. Soc., 46 (1995), 721-734. |
[32] |
M. Nawaz, E. E. Jr Enscore and I. Ham, A heuristic algorithm for the m machine, n job flowshop sequencing problem, OMEGA-Int J. Manage S., 11 (1983), 91-95.
doi: 10.1016/0305-0483(83)90088-9. |
[33] |
V. L. Neppalli, C. L. Chen and J. N. D. Gupta, Genetic algorithms for the two-stage bicriteria flowshop problem, Eur. J. Oper. Res., 95 (1996), 356-373.
doi: 10.1016/0377-2217(95)00275-8. |
[34] |
S. Parthasarathy and C. Rajendran, An experimental evaluation of heuristics for scheduling in a real-life flowshop with sequence-dependent setup times of jobs, Int. J. Prod. Econ., 49 (1997), 255-263.
doi: 10.1016/S0925-5273(97)00017-0. |
[35] |
T. Pasupathy, C. Rajendran and R. K. Suresh, A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs, Int. J. Adv. Manuf. Technol., 27 (2006), 804-815.
doi: 10.1007/s00170-004-2249-6. |
[36] |
C. Rajendran, Two-stage flowshop scheduling problem with bicriteria, J. Oper. Res. Soc., 43 (1992), 879-884. |
[37] |
C. Rajendran, Heuristic algorithm for scheduling in a flowshop to minimize total flowtime, Int. J. Prod. Econ., 29 (1993), 65-73.
doi: 10.1016/0925-5273(93)90024-F. |
[38] |
C. Rajendran, Heuristics for scheduling in flowshop with multiple objectives, Eur. J. Oper. Res., 82 (1995), 540-555.
doi: 10.1016/0377-2217(93)E0212-G. |
[39] |
A. H. G. Rinnooy Kan, "Machine Scheduling problems: Classification, Complexity and Computations," Martinus Nijhoff, The Hague, 1976. |
[40] |
S. Sayin and S. Karabati, A bicriteria approach to the two-machine flow shop scheduling problem, Eur. J. Oper. Res., 113 (1999), 435-449.
doi: 10.1016/S0377-2217(98)00009-5. |
[41] |
W. J. Selen and D. D. Hott, A mixed-integer goal-programming formulation of the standard flow-shop scheduling problem, J. Oper. Res. Soc., 12 (1986), 1121-1128. |
[42] |
P. Serafini, Simulated annealing for multiple objective optimization problems, in "Proceedings of the Tenth International Conference on Multiple Criteria Decision Making," Taipei, (1992), 87-96. |
[43] |
F. S. Sivrikaya-Serifoglu and G. Ulusoy, A bicriteria two machine permutation flowshop problem, Eur. J. Oper. Res., 107 (1998), 414-430.
doi: 10.1016/S0377-2217(97)00338-X. |
[44] |
N. Srinivas and K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evol. Comp., 2 (1995), 221-248.
doi: 10.1162/evco.1994.2.3.221. |
[45] |
V. T'kindt and J. C. Billaut, "Multicriteria scheduling: Theory, Models and Algorithms," 2nd edition, Springer, Berlin, 2006. |
[46] |
V. T'kindt, J. N. D. Gupta and J. C. Billaut, Two machine flowshop scheduling problem with a secondary criterion, Comp. Oper. Res., 30 (2003), 505-526.
doi: 10.1016/S0305-0548(02)00021-7. |
[47] |
V. T'kindt, N. Monmarche and F et al. Tercinet, An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem, Eur. J. Oper. Res., 142 (2002), 250-257.
doi: 10.1016/S0377-2217(02)00265-5. |
[48] |
E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Oper. Res., 47 (1990), 67-74.
doi: 10.1016/0377-2217(90)90090-X. |
[49] |
E. Taillard, Benchmark for basic scheduling problems, Eur. J. Oper. Res., 64 (1993), 278-285.
doi: 10.1016/0377-2217(93)90182-M. |
[50] |
T. K. Varadharajan and C. Rajendran, A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs, Eur. J. Oper. Res., 167 (2005), 772-795.
doi: 10.1016/j.ejor.2004.07.020. |
[51] |
J. M. Wilson, Alternative formulation of a flow shop scheduling problem, J. Oper. Res. Soc., 40 (1989), 395-399. |
[52] |
B. Yagmahan and M. M. Yenisey, Ant colony optimization for multi-objective flow shop scheduling problem, Comp. Ind. Eng., 54 (2008), 411-420.
doi: 10.1016/j.cie.2007.08.003. |
[53] |
E. Zitzler, "Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications," Ph.D thesis, Swiss Federal Institute of Technology in Zurich, 1999. |
show all references
References:
[1] |
J. Arroyo and V. Armentano, Genetic local search for multi-objective flowshop scheduling problems, Eur. J. Oper. Res., 167 (2005), 717-38.
doi: 10.1016/j.ejor.2004.07.017. |
[2] |
T. P. Bagchi, "Multiobjective Scheduling by Genetic Algorithms," Kluwer Academic Publishers, Dordrecht, 1999. |
[3] |
P. C. Chang, S. H. Chen and C. H. Liu, Sub-population genetic algorithm with mining gene structures for multiobjective flowshop scheduling problems, Expert. Syst. Appl., 33 (2007), 762-77.
doi: 10.1016/j.eswa.2006.06.019. |
[4] |
P. C. Chang, J. C. Hsieh and S. G. Lin, The development of gradual priority weighting approach for the multi-objective flowshop scheduling problem, Int. J. Prod. Econ., 79 (2002), 171-83.
doi: 10.1016/S0925-5273(02)00141-X. |
[5] |
P. Czyzak and A. Jaszkiewicz, Pareto Simulated Annealing-a metaheuristic technique for multiple objective combinatorial optimization, J. Multicriteria Dec. Anal., 7 (1998), 34-47.
doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6. |
[6] |
R. L. Daniels and R. J. Chambers, Multiobjective flow-shop scheduling, Nav. Res. Log., 37 (1990), 981-995.
doi: 10.1002/1520-6750(199012)37:6<981::AID-NAV3220370617>3.0.CO;2-H. |
[7] |
J. Dorn, M. Girsch, G. Skele and W. Slany, Comparison of iterative improvement techniques for schedule optimization, Eur. J. Oper. Res., 94 (1996), 349-361.
doi: 10.1016/0377-2217(95)00162-X. |
[8] |
M. Ehrgott and X. Gandibleux, Multiobjective Combinatorial Optimization: Theory, Methodology, and Applications, in "Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys" (eds. M. Ehrgott and X. Gandibleux), Kluwer Academic Publishers, Boston, (2002), 369-444. |
[9] |
V. A. Emelichev and V. A. Perepelista, On cardinality of the set of alternatives in discrete many-criterion problems, Discrete Math. Appl., 2 (1992), 461-471.
doi: 10.1515/dma.1992.2.5.461. |
[10] |
J. M. Framinan, R. Leisten and R. Ruiz-Usano, Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation, Eur. J. Oper. Res., 141 (2002), 559-569.
doi: 10.1016/S0377-2217(01)00278-8. |
[11] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," Freeman, San Francisco, 1979. |
[12] |
M. Geiger, On operators and search space topology in multi-objective flow shop scheduling, Eur. J. Oper. Res., 181 (2007), 195-206.
doi: 10.1016/j.ejor.2006.06.010. |
[13] |
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 5 (1979), 287-326.
doi: 10.1016/S0167-5060(08)70356-X. |
[14] |
J. N. D. Gupta, V. R. Neppalli and F. Werner, Minimizing total flow time in a two-machine flowshop problem with minimum makespan, Int. J. Prod. Econ., 69 (2001), 323-338.
doi: 10.1016/S0925-5273(00)00039-6. |
[15] |
J. C. Ho and Y. L. Chang, A new heuristic for the n-job, m-machine flowshop problem, Eur. J. Oper. Res., 52 (1991), 194-202.
doi: 10.1016/0377-2217(91)90080-F. |
[16] |
J. A. Hoogeveen, "Single-Machine Bicriteria Scheduling," Ph.D thesis, The Netherlands Technology University in Amsterdam, 1992. |
[17] |
G. Huang and A. Lim, Fragmental optimization on the 2-machine bicriteria flowshop scheduling problem, in "Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence," (1992), 33-75. |
[18] |
E. Ignall and L. E. Schrage, Application of the branch-and-bound technique to some flow-shop scheduling problems, Oper. Res., 13 (1965), 400-412.
doi: 10.1287/opre.13.3.400. |
[19] |
H. Ishibuchi and T. Murata, A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE T. Syst. Man. Cy. C., 28 (1998), 392-403.
doi: 10.1109/5326.704576. |
[20] |
A. Jaszkiewicz, A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm, Annals of Operations Research, 13 (2004), 135-158.
doi: 10.1023/B:ANOR.0000039516.50069.5b. |
[21] |
S. M. Johnson, Optimal two- and three-stage production schedules with setup times included, Nav. Res. Log., 1 (1954), 61-68.
doi: 10.1002/nav.3800010110. |
[22] |
D. F. Jones, S. K. Mirrazavi and M. Tamiz, Multi-objective meta-heuristics: An overview of the current state of the art, Eur. J. Oper. Res., 137 (2002), 1-9.
doi: 10.1016/S0377-2217(01)00123-0. |
[23] |
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680.
doi: 10.1126/science.220.4598.671. |
[24] |
J. Knowles and D. Corne, On Metrics Comparing Nondominated Sets, in "Proceedings of the 2002 Congress on Evolutionary Computation Conference," IEEE Press, (2002), 711-716. |
[25] |
J. D. Landa-Silva, E. K. Burke and S. Petrovic, An introduction to multiobjective metaheuristics for scheduling and timetabling, Lect. Notes Econ. Math., 535 (2004), 91-129.
doi: 10.1007/978-3-642-17144-4_4. |
[26] |
C. J. Liao, W. C. Yu and C. B. Joe, Bicriterion scheduling in the two-machine flowshop, J. Oper. Res. Soc., 48 (1997), 929-935. |
[27] |
G. B. McMahon, Optimal production schedules for flow shop, Can. Oper. Res. Soc. J., 7 (1969), 141-151. |
[28] |
G. Minella, R. Ruiz and M. Ciavotta, A review and evaluation of multi-objective algorithms for the flowshop scheduling problem, Informs. Journal on Computing, 20 (2007), 451-471.
doi: 10.1287/ijoc.1070.0258. |
[29] |
E. Mokotoff, Multi-objective simulated annealing for permutation flow shop problems, in "Computational Intelligence in Flow Shop and Job Shop Scheduling" (ed. U. Chakraborty), Springer Verlag, (2009), 101-150.
doi: 10.1007/978-3-642-02836-6_4. |
[30] |
T. Murata, H. Ishibuchi and H. Tanaka, Multi-objective genetic algorithm and its applications to flowshop scheduling, Comp. Ind. Eng., 30 (1996), 957-968.
doi: 10.1016/0360-8352(96)00045-9. |
[31] |
A. Nagar, S. S. Heragu and J. Haddock, A branch and bound approach for a two machine flowshop scheduling problem, J. Oper. Res. Soc., 46 (1995), 721-734. |
[32] |
M. Nawaz, E. E. Jr Enscore and I. Ham, A heuristic algorithm for the m machine, n job flowshop sequencing problem, OMEGA-Int J. Manage S., 11 (1983), 91-95.
doi: 10.1016/0305-0483(83)90088-9. |
[33] |
V. L. Neppalli, C. L. Chen and J. N. D. Gupta, Genetic algorithms for the two-stage bicriteria flowshop problem, Eur. J. Oper. Res., 95 (1996), 356-373.
doi: 10.1016/0377-2217(95)00275-8. |
[34] |
S. Parthasarathy and C. Rajendran, An experimental evaluation of heuristics for scheduling in a real-life flowshop with sequence-dependent setup times of jobs, Int. J. Prod. Econ., 49 (1997), 255-263.
doi: 10.1016/S0925-5273(97)00017-0. |
[35] |
T. Pasupathy, C. Rajendran and R. K. Suresh, A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs, Int. J. Adv. Manuf. Technol., 27 (2006), 804-815.
doi: 10.1007/s00170-004-2249-6. |
[36] |
C. Rajendran, Two-stage flowshop scheduling problem with bicriteria, J. Oper. Res. Soc., 43 (1992), 879-884. |
[37] |
C. Rajendran, Heuristic algorithm for scheduling in a flowshop to minimize total flowtime, Int. J. Prod. Econ., 29 (1993), 65-73.
doi: 10.1016/0925-5273(93)90024-F. |
[38] |
C. Rajendran, Heuristics for scheduling in flowshop with multiple objectives, Eur. J. Oper. Res., 82 (1995), 540-555.
doi: 10.1016/0377-2217(93)E0212-G. |
[39] |
A. H. G. Rinnooy Kan, "Machine Scheduling problems: Classification, Complexity and Computations," Martinus Nijhoff, The Hague, 1976. |
[40] |
S. Sayin and S. Karabati, A bicriteria approach to the two-machine flow shop scheduling problem, Eur. J. Oper. Res., 113 (1999), 435-449.
doi: 10.1016/S0377-2217(98)00009-5. |
[41] |
W. J. Selen and D. D. Hott, A mixed-integer goal-programming formulation of the standard flow-shop scheduling problem, J. Oper. Res. Soc., 12 (1986), 1121-1128. |
[42] |
P. Serafini, Simulated annealing for multiple objective optimization problems, in "Proceedings of the Tenth International Conference on Multiple Criteria Decision Making," Taipei, (1992), 87-96. |
[43] |
F. S. Sivrikaya-Serifoglu and G. Ulusoy, A bicriteria two machine permutation flowshop problem, Eur. J. Oper. Res., 107 (1998), 414-430.
doi: 10.1016/S0377-2217(97)00338-X. |
[44] |
N. Srinivas and K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evol. Comp., 2 (1995), 221-248.
doi: 10.1162/evco.1994.2.3.221. |
[45] |
V. T'kindt and J. C. Billaut, "Multicriteria scheduling: Theory, Models and Algorithms," 2nd edition, Springer, Berlin, 2006. |
[46] |
V. T'kindt, J. N. D. Gupta and J. C. Billaut, Two machine flowshop scheduling problem with a secondary criterion, Comp. Oper. Res., 30 (2003), 505-526.
doi: 10.1016/S0305-0548(02)00021-7. |
[47] |
V. T'kindt, N. Monmarche and F et al. Tercinet, An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem, Eur. J. Oper. Res., 142 (2002), 250-257.
doi: 10.1016/S0377-2217(02)00265-5. |
[48] |
E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Oper. Res., 47 (1990), 67-74.
doi: 10.1016/0377-2217(90)90090-X. |
[49] |
E. Taillard, Benchmark for basic scheduling problems, Eur. J. Oper. Res., 64 (1993), 278-285.
doi: 10.1016/0377-2217(93)90182-M. |
[50] |
T. K. Varadharajan and C. Rajendran, A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs, Eur. J. Oper. Res., 167 (2005), 772-795.
doi: 10.1016/j.ejor.2004.07.020. |
[51] |
J. M. Wilson, Alternative formulation of a flow shop scheduling problem, J. Oper. Res. Soc., 40 (1989), 395-399. |
[52] |
B. Yagmahan and M. M. Yenisey, Ant colony optimization for multi-objective flow shop scheduling problem, Comp. Ind. Eng., 54 (2008), 411-420.
doi: 10.1016/j.cie.2007.08.003. |
[53] |
E. Zitzler, "Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications," Ph.D thesis, Swiss Federal Institute of Technology in Zurich, 1999. |
[1] |
Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747 |
[2] |
Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134 |
[3] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[4] |
Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 |
[5] |
Ankan Bhaumik, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management. Journal of Dynamics and Games, 2021, 8 (2) : 101-118. doi: 10.3934/jdg.2020031 |
[6] |
Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021208 |
[7] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[8] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[9] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[10] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[11] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[12] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[13] |
Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021169 |
[14] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[15] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
[16] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[17] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[18] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[19] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[20] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]