April  2011, 7(2): 283-289. doi: 10.3934/jimo.2011.7.283

New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays

1. 

Department of Control Science & Engineering, Huazhong University of Science & Technology, and Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan, Hubei 430074, China

2. 

Texas A&M University at Qatar, Doha, P.O. Box 5825, Qatar, United States

Received  December 2009 Revised  September 2010 Published  April 2011

In this paper, by using some analytic techniques, several sufficient conditions are given to ensure the passivity of continuous-time recurrent neural networks with delays. The passivity conditions are presented in terms of some negative semi-definite matrices. They are easily verifiable and easier to check computing with some conditions in terms of complicated linear matrix inequality.
Citation: Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283
References:
[1]

Automatica, 33 (1996), 635-641. doi: 10.1016/S0005-1098(96)00180-X.  Google Scholar

[2]

IEEE Transactions on Robotics, 24 (2008), 416-429. doi: 10.1109/TRO.2008.915438.  Google Scholar

[3]

Journal of Industrial and Management Optimization, 5 (2009), 867-880. doi: 10.3934/jimo.2009.5.867.  Google Scholar

[4]

IEEE Transactions on Circuits and Systems-II: Express Briefs, 52 (2005), 471-475. Google Scholar

[5]

Journal of Industrial and Management Optimization, 4 (2008), 817-826.  Google Scholar

[6]

Physical Review E, 68 (2003), 1-7. doi: 10.1103/PhysRevE.68.016118.  Google Scholar

[7]

Neurocomputing, 70 (2007), 1071-1078. Google Scholar

[8]

Springer-Verlag, London, U.K., 2000. Google Scholar

[9]

Journal of Mathematical Analysis and Applications, 292 (2004), 247-258. doi: 10.1016/j.jmaa.2003.11.055.  Google Scholar

[10]

Chaos, Solitons and Fractals, 34 (2007), 1546-1551. doi: 10.1016/j.chaos.2005.04.124.  Google Scholar

[11]

Journal of Process Control, 18 (2008), 515-526. doi: 10.1016/j.jprocont.2007.07.007.  Google Scholar

[12]

IEEE Transactions on Circuits and Systems-II: Express Briefs, 54 (2007), 161-165. doi: 10.1109/TCSII.2006.886464.  Google Scholar

[13]

Industrial & Engineering Chemistry Research, 47 (2008), 4765-4774. doi: 10.1021/ie070599c.  Google Scholar

[14]

Journal of Industrial and Management Optimization, 4 (2008), 33-52.  Google Scholar

[15]

Journal of Industrial and Management Optimization, 1 (2005), 389-404.  Google Scholar

[16]

Journal of Industrial and Management Optimization, 1 (2005), 415-432.  Google Scholar

[17]

IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48 (2001), 256-259. doi: 10.1109/81.904893.  Google Scholar

[18]

IEEE Transactions on Neural Networks, 12 (2001), 412-417. doi: 10.1109/72.914535.  Google Scholar

[19]

IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 173-178. Google Scholar

show all references

References:
[1]

Automatica, 33 (1996), 635-641. doi: 10.1016/S0005-1098(96)00180-X.  Google Scholar

[2]

IEEE Transactions on Robotics, 24 (2008), 416-429. doi: 10.1109/TRO.2008.915438.  Google Scholar

[3]

Journal of Industrial and Management Optimization, 5 (2009), 867-880. doi: 10.3934/jimo.2009.5.867.  Google Scholar

[4]

IEEE Transactions on Circuits and Systems-II: Express Briefs, 52 (2005), 471-475. Google Scholar

[5]

Journal of Industrial and Management Optimization, 4 (2008), 817-826.  Google Scholar

[6]

Physical Review E, 68 (2003), 1-7. doi: 10.1103/PhysRevE.68.016118.  Google Scholar

[7]

Neurocomputing, 70 (2007), 1071-1078. Google Scholar

[8]

Springer-Verlag, London, U.K., 2000. Google Scholar

[9]

Journal of Mathematical Analysis and Applications, 292 (2004), 247-258. doi: 10.1016/j.jmaa.2003.11.055.  Google Scholar

[10]

Chaos, Solitons and Fractals, 34 (2007), 1546-1551. doi: 10.1016/j.chaos.2005.04.124.  Google Scholar

[11]

Journal of Process Control, 18 (2008), 515-526. doi: 10.1016/j.jprocont.2007.07.007.  Google Scholar

[12]

IEEE Transactions on Circuits and Systems-II: Express Briefs, 54 (2007), 161-165. doi: 10.1109/TCSII.2006.886464.  Google Scholar

[13]

Industrial & Engineering Chemistry Research, 47 (2008), 4765-4774. doi: 10.1021/ie070599c.  Google Scholar

[14]

Journal of Industrial and Management Optimization, 4 (2008), 33-52.  Google Scholar

[15]

Journal of Industrial and Management Optimization, 1 (2005), 389-404.  Google Scholar

[16]

Journal of Industrial and Management Optimization, 1 (2005), 415-432.  Google Scholar

[17]

IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48 (2001), 256-259. doi: 10.1109/81.904893.  Google Scholar

[18]

IEEE Transactions on Neural Networks, 12 (2001), 412-417. doi: 10.1109/72.914535.  Google Scholar

[19]

IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 173-178. Google Scholar

[1]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[4]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[6]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[7]

Xiaochun Gu, Fang Han, Zhijie Wang, Kaleem Kashif, Wenlian Lu. Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021035

[8]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[9]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[10]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[11]

Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003

[12]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[13]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[14]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[17]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[18]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[19]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[20]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]