• Previous Article
    Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm
  • JIMO Home
  • This Issue
  • Next Article
    Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis
April  2011, 7(2): 365-383. doi: 10.3934/jimo.2011.7.365

Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method

1. 

Department of Industrial Engineering and Management, Hsiuping Institute of Technology, 11 Gungye Road, Dali City, Taichung 412, Taiwan, Taiwan

Received  January 2010 Revised  January 2011 Published  April 2011

In practical aggregate production planning (APP) decisions, the decision maker (DM) must simultaneously handle multiple conflicting goals that govern the use of the constrained resources. This study aims to present a two-phase fuzzy goal programming method to solve multi-objective APP problems with multiple products and multi-time periods. The designed fuzzy multi-objective linear programming model attempts to simultaneously minimize total costs, total carrying and backordering volume, and total rates of changes in labor levels with reference to inventory carrying levels, machine capacity, work-force levels, warehouse space and available budget. An industrial case is used to demonstrate the feasibility of applying the proposed method to real-life APP decisions. The contribution of this study lies in presenting a two-phase fuzzy goal programming methodology to solve multi-objective APP decision problems and provides a systematic decision-making framework that facilitates a DM to interactively adjust the search direction until the preferred efficient compromise solution is obtained.
Citation: Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial & Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365
References:
[1]

Information Sciences, 177 (2007), 4241-4255. doi: 10.1016/j.ins.2007.04.012.  Google Scholar

[2]

R. E. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment,, Management Sciences, 17 ().  doi: 10.1287/mnsc.17.4.B141.  Google Scholar

[3]

Operations Research, 32 (1984), 999-1018. doi: 10.1287/opre.32.5.999.  Google Scholar

[4]

Fuzzy Sets and Systems, 26 (1988), 135-138. doi: 10.1016/0165-0114(88)90013-9.  Google Scholar

[5]

International Journal of Production Economics, 59 (1999), 305-311. doi: 10.1016/S0925-5273(98)00104-2.  Google Scholar

[6]

International Journal of Production Economics, 49 (1997), 145-158. doi: 10.1016/S0925-5273(96)00117-X.  Google Scholar

[7]

European Journal of Operational Research, 118 (1999), 95-126. doi: 10.1016/S0377-2217(98)00307-5.  Google Scholar

[8]

Mathematical and Computer Modelling, 15 (1991), 91-95. doi: 10.1016/0895-7177(91)90093-M.  Google Scholar

[9]

Computers and Operations Research, 35 (2008), 2656-2671. Google Scholar

[10]

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 33 (2003), 302-313. doi: 10.1109/TSMCA.2003.817032.  Google Scholar

[11]

Fuzzy Sets and Systems, 107 (1999), 191-195. doi: 10.1016/S0165-0114(97)00304-7.  Google Scholar

[12]

Fuzzy Sets and Systems, 6 (1981), 235-248. doi: 10.1016/0165-0114(81)90002-6.  Google Scholar

[13]

Management Science, 2 (1955), 1-30. doi: 10.1287/mnsc.2.1.1.  Google Scholar

[14]

Fuzzy Sets and Systems, 119 (2001), 59-70. doi: 10.1016/S0165-0114(99)00086-X.  Google Scholar

[15]

Computers and Operations Research, 32 (2005), 1213-1236. Google Scholar

[16]

PTR: Prentice Hall (1995) Google Scholar

[17]

Fuzzy Sets and Systems, 49 (1992), 121-133. doi: 10.1016/0165-0114(92)90318-X.  Google Scholar

[18]

Fuzzy Sets and Systems, 53 (1993), 275-283. doi: 10.1016/0165-0114(93)90399-3.  Google Scholar

[19]

Computers and Industrial Engineering, 56 (2009), 1053-1064. doi: 10.1016/j.cie.2008.09.017.  Google Scholar

[20]

Fuzzy Sets and Systems, 157 (2006), 1328-1332. doi: 10.1016/j.fss.2005.12.003.  Google Scholar

[21]

Production Planning and Control, 18 (2007), 548-560. doi: 10.1080/09537280701530033.  Google Scholar

[22]

International Journal of General Systems, 38 (2009), 311-330. doi: 10.1080/03081070701785833.  Google Scholar

[23]

International Journal of Production Research, 18 (1980), 741-752. doi: 10.1080/00207548008919703.  Google Scholar

[24]

Mathematical and Computer Modelling, 49 (2009), 1372-1385. doi: 10.1016/j.mcm.2008.11.004.  Google Scholar

[25]

European Journal of Operational Research, 61 (1992), 255-272. doi: 10.1016/0377-2217(92)90356-E.  Google Scholar

[26]

Information Sciences, 178 (2008), 485-500. doi: 10.1016/j.ins.2007.08.002.  Google Scholar

[27]

International Journal of Production Economics, 59 (1999), 443-453. doi: 10.1016/S0925-5273(98)00109-1.  Google Scholar

[28]

Fuzzy Sets and Systems, 16 (1985), 123-138. doi: 10.1016/S0165-0114(85)80013-0.  Google Scholar

[29]

European Journal of Operational Research, 92 (1996), 512-527. doi: 10.1016/0377-2217(95)00008-9.  Google Scholar

[30]

International Journal of Production Research, 20 (1982), 105-114. doi: 10.1080/00207548208947752.  Google Scholar

[31]

International Journal of Operations and Quantitative Management, 2 (1996), 127-143. Google Scholar

[32]

Computers and Chemical Engineering, 28 (2004), 993-999. doi: 10.1016/j.compchemeng.2003.09.006.  Google Scholar

[33]

Production Planning and Control, 14 (2003), 425-436. doi: 10.1080/0953728031000154264.  Google Scholar

[34]

Control and Cybernetics, 13 (1984), 185-194.  Google Scholar

[35]

International Journal of Systems Science, 34 (2003), 661-673. doi: 10.1080/00207720310001624113.  Google Scholar

[36]

Production Planning and Control, 11 (2000), 670-676. doi: 10.1080/095372800432133.  Google Scholar

[37]

Fuzzy Sets and Systems, 159 (2008), 193-214. doi: 10.1016/j.fss.2007.08.010.  Google Scholar

[38]

Computers and Industrial Engineering, 51 (2006), 715-725. doi: 10.1016/j.cie.2006.08.017.  Google Scholar

[39]

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27 (1997), 636-645. doi: 10.1109/3468.618262.  Google Scholar

[40]

European Journal of Operational Research, 133 (2001), 521-536. doi: 10.1016/S0377-2217(00)00196-X.  Google Scholar

[41]

Computers and Industrial Engineering, 46 (2004), 17-41. doi: 10.1016/j.cie.2003.09.009.  Google Scholar

[42]

International Journal of Production Economics, 98 (2005), 328-341. doi: 10.1016/j.ijpe.2004.09.011.  Google Scholar

[43]

International Journal of Advanced Manufacturing Technology, 25 (2005), 589-597. doi: 10.1007/s00170-003-1885-6.  Google Scholar

[44]

International Journal of Approximate Reasoning, 48 (2008), 246-262. doi: 10.1016/j.ijar.2007.08.008.  Google Scholar

[45]

Fuzzy Sets and Systems, 22 (1987), 171-180. doi: 10.1016/0165-0114(87)90014-5.  Google Scholar

[46]

Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[47]

International Journal of General Systems, 2 (1976), 209-215. doi: 10.1080/03081077608547470.  Google Scholar

[48]

Fuzzy Sets and Systems, 1 (1978), 45-56. doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

[49]

Boston: Kluwer Academic, 1996.  Google Scholar

show all references

References:
[1]

Information Sciences, 177 (2007), 4241-4255. doi: 10.1016/j.ins.2007.04.012.  Google Scholar

[2]

R. E. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment,, Management Sciences, 17 ().  doi: 10.1287/mnsc.17.4.B141.  Google Scholar

[3]

Operations Research, 32 (1984), 999-1018. doi: 10.1287/opre.32.5.999.  Google Scholar

[4]

Fuzzy Sets and Systems, 26 (1988), 135-138. doi: 10.1016/0165-0114(88)90013-9.  Google Scholar

[5]

International Journal of Production Economics, 59 (1999), 305-311. doi: 10.1016/S0925-5273(98)00104-2.  Google Scholar

[6]

International Journal of Production Economics, 49 (1997), 145-158. doi: 10.1016/S0925-5273(96)00117-X.  Google Scholar

[7]

European Journal of Operational Research, 118 (1999), 95-126. doi: 10.1016/S0377-2217(98)00307-5.  Google Scholar

[8]

Mathematical and Computer Modelling, 15 (1991), 91-95. doi: 10.1016/0895-7177(91)90093-M.  Google Scholar

[9]

Computers and Operations Research, 35 (2008), 2656-2671. Google Scholar

[10]

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 33 (2003), 302-313. doi: 10.1109/TSMCA.2003.817032.  Google Scholar

[11]

Fuzzy Sets and Systems, 107 (1999), 191-195. doi: 10.1016/S0165-0114(97)00304-7.  Google Scholar

[12]

Fuzzy Sets and Systems, 6 (1981), 235-248. doi: 10.1016/0165-0114(81)90002-6.  Google Scholar

[13]

Management Science, 2 (1955), 1-30. doi: 10.1287/mnsc.2.1.1.  Google Scholar

[14]

Fuzzy Sets and Systems, 119 (2001), 59-70. doi: 10.1016/S0165-0114(99)00086-X.  Google Scholar

[15]

Computers and Operations Research, 32 (2005), 1213-1236. Google Scholar

[16]

PTR: Prentice Hall (1995) Google Scholar

[17]

Fuzzy Sets and Systems, 49 (1992), 121-133. doi: 10.1016/0165-0114(92)90318-X.  Google Scholar

[18]

Fuzzy Sets and Systems, 53 (1993), 275-283. doi: 10.1016/0165-0114(93)90399-3.  Google Scholar

[19]

Computers and Industrial Engineering, 56 (2009), 1053-1064. doi: 10.1016/j.cie.2008.09.017.  Google Scholar

[20]

Fuzzy Sets and Systems, 157 (2006), 1328-1332. doi: 10.1016/j.fss.2005.12.003.  Google Scholar

[21]

Production Planning and Control, 18 (2007), 548-560. doi: 10.1080/09537280701530033.  Google Scholar

[22]

International Journal of General Systems, 38 (2009), 311-330. doi: 10.1080/03081070701785833.  Google Scholar

[23]

International Journal of Production Research, 18 (1980), 741-752. doi: 10.1080/00207548008919703.  Google Scholar

[24]

Mathematical and Computer Modelling, 49 (2009), 1372-1385. doi: 10.1016/j.mcm.2008.11.004.  Google Scholar

[25]

European Journal of Operational Research, 61 (1992), 255-272. doi: 10.1016/0377-2217(92)90356-E.  Google Scholar

[26]

Information Sciences, 178 (2008), 485-500. doi: 10.1016/j.ins.2007.08.002.  Google Scholar

[27]

International Journal of Production Economics, 59 (1999), 443-453. doi: 10.1016/S0925-5273(98)00109-1.  Google Scholar

[28]

Fuzzy Sets and Systems, 16 (1985), 123-138. doi: 10.1016/S0165-0114(85)80013-0.  Google Scholar

[29]

European Journal of Operational Research, 92 (1996), 512-527. doi: 10.1016/0377-2217(95)00008-9.  Google Scholar

[30]

International Journal of Production Research, 20 (1982), 105-114. doi: 10.1080/00207548208947752.  Google Scholar

[31]

International Journal of Operations and Quantitative Management, 2 (1996), 127-143. Google Scholar

[32]

Computers and Chemical Engineering, 28 (2004), 993-999. doi: 10.1016/j.compchemeng.2003.09.006.  Google Scholar

[33]

Production Planning and Control, 14 (2003), 425-436. doi: 10.1080/0953728031000154264.  Google Scholar

[34]

Control and Cybernetics, 13 (1984), 185-194.  Google Scholar

[35]

International Journal of Systems Science, 34 (2003), 661-673. doi: 10.1080/00207720310001624113.  Google Scholar

[36]

Production Planning and Control, 11 (2000), 670-676. doi: 10.1080/095372800432133.  Google Scholar

[37]

Fuzzy Sets and Systems, 159 (2008), 193-214. doi: 10.1016/j.fss.2007.08.010.  Google Scholar

[38]

Computers and Industrial Engineering, 51 (2006), 715-725. doi: 10.1016/j.cie.2006.08.017.  Google Scholar

[39]

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27 (1997), 636-645. doi: 10.1109/3468.618262.  Google Scholar

[40]

European Journal of Operational Research, 133 (2001), 521-536. doi: 10.1016/S0377-2217(00)00196-X.  Google Scholar

[41]

Computers and Industrial Engineering, 46 (2004), 17-41. doi: 10.1016/j.cie.2003.09.009.  Google Scholar

[42]

International Journal of Production Economics, 98 (2005), 328-341. doi: 10.1016/j.ijpe.2004.09.011.  Google Scholar

[43]

International Journal of Advanced Manufacturing Technology, 25 (2005), 589-597. doi: 10.1007/s00170-003-1885-6.  Google Scholar

[44]

International Journal of Approximate Reasoning, 48 (2008), 246-262. doi: 10.1016/j.ijar.2007.08.008.  Google Scholar

[45]

Fuzzy Sets and Systems, 22 (1987), 171-180. doi: 10.1016/0165-0114(87)90014-5.  Google Scholar

[46]

Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[47]

International Journal of General Systems, 2 (1976), 209-215. doi: 10.1080/03081077608547470.  Google Scholar

[48]

Fuzzy Sets and Systems, 1 (1978), 45-56. doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

[49]

Boston: Kluwer Academic, 1996.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[3]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[4]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[5]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[6]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[7]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[8]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[9]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[10]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[11]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[12]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[13]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[14]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[15]

Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021063

[16]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[17]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016

[18]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[19]

Sheng-I Chen, Yen-Che Tseng. A partitioning column approach for solving LED sorter manipulator path planning problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021055

[20]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]