-
Previous Article
Convergence property of an interior penalty approach to pricing American option
- JIMO Home
- This Issue
-
Next Article
An integrated approach for the operations of distribution and lateral transshipment for seasonal products - A case study in household product industry
A market selection and inventory ordering problem under demand uncertainty
1. | Department of Management Science and Engineering, School of Economics and Management, Southeast University, Nanjing 211189, China, China, China |
References:
[1] |
I. S. Bakal, J. Geunes and H. E. Romeijn, Market selection decisions for inventory models with price-sensitive demand, Journal of Global Optimization, 4 (2008), 633-657.
doi: 10.1007/s10898-007-9269-3. |
[2] |
K. Chahar and K. Taaffe, Risk averse demand selection with all-or-nothing orders, OMEGA-International Journal of Management Science, 37 (2009), 996-1006.
doi: 10.1016/j.omega.2008.11.004. |
[3] |
A. K. Chakravarty, J. B. Orlin and U. G. Rothblum, Consecutive optimizers for a partitioning problem with applications to optimal inventory groupings for joint replenishment, Operations Research, 33 (1985), 820-834.
doi: 10.1287/opre.33.4.820. |
[4] |
M. S. Daskin, C.R. Coullard and Z. J. Max Shen, An inventory-location model: formulation, solution algorithm and computational results, Recent developments in the theory and applications of location models, Part I. Ann. Oper. Res., 110 (2002), 83-106.
doi: 10.1023/A:1020763400324. |
[5] |
J. Geunes, Z. J. Max Shen and H. E. Romeijn, Economic ordering decisions with market selection flexibility, Naval Research Logistics, 51 (2004), 117-136.
doi: 10.1002/nav.10109. |
[6] |
J. Geunes, H. E. Romeijn and K. Taaffe, Requirements planning with dynamic pricing and order selection flexibility, Operations Research, 54 (2006), 394-401.
doi: 10.1287/opre.1050.0255. |
[7] |
J. Geunes, R. Levi, H. E. Romeijn and D. Shmoys, Approximation algorithms for supply chain planning problems with market choice,, Mathematical Programming, ().
|
[8] |
S. Nahmias, "Production and Operations Management," Irwin, Chicago, 1997. |
[9] |
M. Önal and H. E. Romeijn, Two-echelon requirements planning with pricing decisions, Journal of Industrial and Management Optimization, 5 (2009), 767-781.
doi: 10.3934/jimo.2009.5.767. |
[10] |
L. Ozsen, C. R. Coullard and M. S. Daskin, Capacitated warehouse location model with risk pooling, Naval Research Logistics, 55 (2008), 295-312.
doi: 10.1002/nav.20282. |
[11] |
L. Ozsen, M. S. Daskin and C. R. Coullard, Facility location modeling and inventory management with multisourcing, Transportation Science, 43 (2009), 455-472.
doi: 10.1287/trsc.1090.0268. |
[12] |
Z. J. Max Shen, A multi-commodity supply chain design problem, IIE Transactions, 37 (2005), 753-762.
doi: 10.1080/07408170590961120. |
[13] |
Z. J. Max Shen, C. R. Coullard and M. S. Daskin, A joint location-inventory model, Transportation Science, 37 (2003), 40-55.
doi: 10.1287/trsc.37.1.40.12823. |
[14] |
J. Shu, C. P. Teo and Z. J. Max Shen, Stochastic transportation-inventory network design problem, Operations Research, 53 (2005), 48-60.
doi: 10.1287/opre.1040.0140. |
[15] |
L. V. Snyder, M. S. Daskin and C. P. Teo, The stochastic location model with risk pooling, European Journal of Operational Research, 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[16] |
K. Taaffe, J. Geunes and H. E. Romeijn, Target market selection and marketing effort under uncertainty: the selective newsvendor, European Journal of Operational Research, 189 (2008), 987-1003.
doi: 10.1016/j.ejor.2006.11.049. |
[17] |
K. Taaffe, H. E. Romeijn and D. Tirumalasetty, A selective newsvendor approach to order management, Naval Research Logistics, 55 (2008), 769-784.
doi: 10.1002/nav.20320. |
[18] |
V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and Its Applications, 16 (1971), 264-280.
doi: 10.1137/1116025. |
[19] |
L. Zhang and S.-Y. Wu, Robust solutions to euclidean facility location problems with uncertain data, Journal of Industrial and Management Optimization, 6 (2010), 751-760.
doi: 10.3934/jimo.2010.6.751. |
show all references
References:
[1] |
I. S. Bakal, J. Geunes and H. E. Romeijn, Market selection decisions for inventory models with price-sensitive demand, Journal of Global Optimization, 4 (2008), 633-657.
doi: 10.1007/s10898-007-9269-3. |
[2] |
K. Chahar and K. Taaffe, Risk averse demand selection with all-or-nothing orders, OMEGA-International Journal of Management Science, 37 (2009), 996-1006.
doi: 10.1016/j.omega.2008.11.004. |
[3] |
A. K. Chakravarty, J. B. Orlin and U. G. Rothblum, Consecutive optimizers for a partitioning problem with applications to optimal inventory groupings for joint replenishment, Operations Research, 33 (1985), 820-834.
doi: 10.1287/opre.33.4.820. |
[4] |
M. S. Daskin, C.R. Coullard and Z. J. Max Shen, An inventory-location model: formulation, solution algorithm and computational results, Recent developments in the theory and applications of location models, Part I. Ann. Oper. Res., 110 (2002), 83-106.
doi: 10.1023/A:1020763400324. |
[5] |
J. Geunes, Z. J. Max Shen and H. E. Romeijn, Economic ordering decisions with market selection flexibility, Naval Research Logistics, 51 (2004), 117-136.
doi: 10.1002/nav.10109. |
[6] |
J. Geunes, H. E. Romeijn and K. Taaffe, Requirements planning with dynamic pricing and order selection flexibility, Operations Research, 54 (2006), 394-401.
doi: 10.1287/opre.1050.0255. |
[7] |
J. Geunes, R. Levi, H. E. Romeijn and D. Shmoys, Approximation algorithms for supply chain planning problems with market choice,, Mathematical Programming, ().
|
[8] |
S. Nahmias, "Production and Operations Management," Irwin, Chicago, 1997. |
[9] |
M. Önal and H. E. Romeijn, Two-echelon requirements planning with pricing decisions, Journal of Industrial and Management Optimization, 5 (2009), 767-781.
doi: 10.3934/jimo.2009.5.767. |
[10] |
L. Ozsen, C. R. Coullard and M. S. Daskin, Capacitated warehouse location model with risk pooling, Naval Research Logistics, 55 (2008), 295-312.
doi: 10.1002/nav.20282. |
[11] |
L. Ozsen, M. S. Daskin and C. R. Coullard, Facility location modeling and inventory management with multisourcing, Transportation Science, 43 (2009), 455-472.
doi: 10.1287/trsc.1090.0268. |
[12] |
Z. J. Max Shen, A multi-commodity supply chain design problem, IIE Transactions, 37 (2005), 753-762.
doi: 10.1080/07408170590961120. |
[13] |
Z. J. Max Shen, C. R. Coullard and M. S. Daskin, A joint location-inventory model, Transportation Science, 37 (2003), 40-55.
doi: 10.1287/trsc.37.1.40.12823. |
[14] |
J. Shu, C. P. Teo and Z. J. Max Shen, Stochastic transportation-inventory network design problem, Operations Research, 53 (2005), 48-60.
doi: 10.1287/opre.1040.0140. |
[15] |
L. V. Snyder, M. S. Daskin and C. P. Teo, The stochastic location model with risk pooling, European Journal of Operational Research, 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[16] |
K. Taaffe, J. Geunes and H. E. Romeijn, Target market selection and marketing effort under uncertainty: the selective newsvendor, European Journal of Operational Research, 189 (2008), 987-1003.
doi: 10.1016/j.ejor.2006.11.049. |
[17] |
K. Taaffe, H. E. Romeijn and D. Tirumalasetty, A selective newsvendor approach to order management, Naval Research Logistics, 55 (2008), 769-784.
doi: 10.1002/nav.20320. |
[18] |
V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and Its Applications, 16 (1971), 264-280.
doi: 10.1137/1116025. |
[19] |
L. Zhang and S.-Y. Wu, Robust solutions to euclidean facility location problems with uncertain data, Journal of Industrial and Management Optimization, 6 (2010), 751-760.
doi: 10.3934/jimo.2010.6.751. |
[1] |
Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004 |
[2] |
Rong Hu, Ya-Ping Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 573-586. doi: 10.3934/jimo.2016032 |
[3] |
Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 |
[4] |
Behrouz Kheirfam. Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2010, 6 (2) : 347-361. doi: 10.3934/jimo.2010.6.347 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Weifan Jiang, Jian Liu, Hui Zhou, Miyu Wan. Strategy selection of inventory financing based on overconfident retailer. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021178 |
[7] |
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477 |
[8] |
Yue Qi, Tongyang Liu, Su Zhang, Yu Zhang. Robust Markowitz: Comprehensively maximizing Sharpe ratio by parametric-quadratic programming. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021235 |
[9] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235 |
[10] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192 |
[11] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1591-1610. doi: 10.3934/dcdsb.2021102 |
[12] |
Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041 |
[13] |
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323 |
[14] |
Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial and Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079 |
[15] |
Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial and Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757 |
[16] |
Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 |
[17] |
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167 |
[18] |
T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391 |
[19] |
Chao Deng, Haixiang Yao, Yan Chen. Optimal investment and risk control problems with delay for an insurer in defaultable market. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2563-2579. doi: 10.3934/jimo.2019070 |
[20] |
Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]