April  2011, 7(2): 435-447. doi: 10.3934/jimo.2011.7.435

Convergence property of an interior penalty approach to pricing American option

1. 

Department of Finance, Business School, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060

2. 

School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009

Received  February 2010 Revised  February 2011 Published  April 2011

This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
Citation: Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435
References:
[1]

A. Bensoussan and J. L. Lions, "Applications of Variational Inequalities in Stochastic Control,", North-Holland, (1982). Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Economy, 81 (1973), 637. doi: 10.1086/260062. Google Scholar

[3]

M. Brennan and E. Schwartz, The valuation of American put options,, J. Finance, 32 (1977), 449. doi: 10.2307/2326779. Google Scholar

[4]

J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach,, J. Financial Econom., 7 (1979), 229. doi: 10.1016/0304-405X(79)90015-1. Google Scholar

[5]

G. Dauvaut and L. J. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976). Google Scholar

[6]

M. A. H. Dempster, J. P. Hutton and D. G. Richards, LP valuation of exotic American options exploiting structure,, J. Comp. Fin., 2 (1998), 61. Google Scholar

[7]

E. M. Elliot and J. R. Ockendon, "Weak and Variational Methods for Moving Boundary Problems,", Pitman, (1982). Google Scholar

[8]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method,, SIAM J. on Sci. Comput., 23 (2002), 2095. doi: 10.1137/S1064827500382324. Google Scholar

[9]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems,", Springer-Verlag, (1984). Google Scholar

[10]

J. Haslinger, M. Miettinen and D. P. Panagiotopoulos, "Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,", Kluwer Academic Publishers, (1999). Google Scholar

[11]

J. Huang and J.-S. Pang, Option pricing and linear complementarity,, J. Comp. Fin., 2 (1998), 31. Google Scholar

[12]

A. Q. M. Khaliq, D. A. Voss and S. H. K. Kazmi, A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach,, J. Banking Finance, 30 (2006), 489. doi: 10.1016/j.jbankfin.2005.04.017. Google Scholar

[13]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, J. Comp. Fin., 5 (2001), 69. Google Scholar

[14]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty methods for the numerical solution of American multi-asset option problems,, J. Comput. Appl. Math., 222 (2008), 3. doi: 10.1016/j.cam.2007.10.041. Google Scholar

[15]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, J. Optim. Theory Appl., 129 (2006), 227. doi: 10.1007/s10957-006-9062-3. Google Scholar

[16]

P. Wilmott, J. Dewynne and S. Howison, "Option Pricing: Mathematical Models and Computation,", Oxford Financial Press, (1994). Google Scholar

[17]

K. Zhang, S. Wang, X. Q. Yang and K. L. Teo, A power penalty approach to numerical solution of two-factor American option pricing,, Numer. Math: TMA, 2 (2009), 202. Google Scholar

[18]

K. Zhang, X. Q. Yang and K. L. Teo, A power penalty approach to American option pricing with jump diffusion processes,, JIMO, 4 (2008), 767. Google Scholar

[19]

R. Zvan, P. A. Forsyth and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, J. Comput. Appl. Math., 91 (1998), 199. doi: 10.1016/S0377-0427(98)00037-5. Google Scholar

show all references

References:
[1]

A. Bensoussan and J. L. Lions, "Applications of Variational Inequalities in Stochastic Control,", North-Holland, (1982). Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Economy, 81 (1973), 637. doi: 10.1086/260062. Google Scholar

[3]

M. Brennan and E. Schwartz, The valuation of American put options,, J. Finance, 32 (1977), 449. doi: 10.2307/2326779. Google Scholar

[4]

J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach,, J. Financial Econom., 7 (1979), 229. doi: 10.1016/0304-405X(79)90015-1. Google Scholar

[5]

G. Dauvaut and L. J. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976). Google Scholar

[6]

M. A. H. Dempster, J. P. Hutton and D. G. Richards, LP valuation of exotic American options exploiting structure,, J. Comp. Fin., 2 (1998), 61. Google Scholar

[7]

E. M. Elliot and J. R. Ockendon, "Weak and Variational Methods for Moving Boundary Problems,", Pitman, (1982). Google Scholar

[8]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method,, SIAM J. on Sci. Comput., 23 (2002), 2095. doi: 10.1137/S1064827500382324. Google Scholar

[9]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems,", Springer-Verlag, (1984). Google Scholar

[10]

J. Haslinger, M. Miettinen and D. P. Panagiotopoulos, "Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,", Kluwer Academic Publishers, (1999). Google Scholar

[11]

J. Huang and J.-S. Pang, Option pricing and linear complementarity,, J. Comp. Fin., 2 (1998), 31. Google Scholar

[12]

A. Q. M. Khaliq, D. A. Voss and S. H. K. Kazmi, A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach,, J. Banking Finance, 30 (2006), 489. doi: 10.1016/j.jbankfin.2005.04.017. Google Scholar

[13]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, J. Comp. Fin., 5 (2001), 69. Google Scholar

[14]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty methods for the numerical solution of American multi-asset option problems,, J. Comput. Appl. Math., 222 (2008), 3. doi: 10.1016/j.cam.2007.10.041. Google Scholar

[15]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, J. Optim. Theory Appl., 129 (2006), 227. doi: 10.1007/s10957-006-9062-3. Google Scholar

[16]

P. Wilmott, J. Dewynne and S. Howison, "Option Pricing: Mathematical Models and Computation,", Oxford Financial Press, (1994). Google Scholar

[17]

K. Zhang, S. Wang, X. Q. Yang and K. L. Teo, A power penalty approach to numerical solution of two-factor American option pricing,, Numer. Math: TMA, 2 (2009), 202. Google Scholar

[18]

K. Zhang, X. Q. Yang and K. L. Teo, A power penalty approach to American option pricing with jump diffusion processes,, JIMO, 4 (2008), 767. Google Scholar

[19]

R. Zvan, P. A. Forsyth and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, J. Comput. Appl. Math., 91 (1998), 199. doi: 10.1016/S0377-0427(98)00037-5. Google Scholar

[1]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[2]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[3]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[4]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[5]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[6]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[7]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[8]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[9]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[10]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[11]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[12]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[13]

Kai Wang, Lingling Xu, Deren Han. A new parallel splitting descent method for structured variational inequalities. Journal of Industrial & Management Optimization, 2014, 10 (2) : 461-476. doi: 10.3934/jimo.2014.10.461

[14]

Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219

[15]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018158

[16]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[17]

X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2006, 2 (3) : 287-296. doi: 10.3934/jimo.2006.2.287

[18]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[19]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[20]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]