-
Previous Article
A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function
- JIMO Home
- This Issue
-
Next Article
Convergence property of an interior penalty approach to pricing American option
Overbooking with transference option for flights
1. | School of management, Fudan University, Shanghai, 200433, China |
2. | School of management, Fudan University, Shanghai 200433, China |
3. | School of Management, Fudan University, Shanghai 200433 |
References:
[1] |
J. Alstrup, S. Boas, O. B. G. Madsen and R. V. V. Vidal, Booking Policy for Flights with two types of passengers, European Journal of Operational Research, 27 (1986), 274-288.
doi: 10.1016/0377-2217(86)90325-5. |
[2] |
D. Arthur, S. Malone and O. Nir, Optimal overbooking, The UMAP Journal, 23 (2002), 283-300. |
[3] |
Y. Bassok, R. Anupindi and R. Akella, Single-period multiproduct inventory models with substitution, Operations Research, 47 (1999), 632-642.
doi: 10.1287/opre.47.4.632. |
[4] |
Z. P. Bayindir, N. Erkip and R. Güllü, Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint, Comput Oper Res, 34 (2007), 487-514.
doi: 10.1016/j.cor.2005.03.010. |
[5] |
P. P. Belobaba, Airline Yield Management: An Overview of Seat Inventory Control, Transportation Science, 21 (1987), 63-73.
doi: 10.1287/trsc.21.2.63. |
[6] |
P. P. Belobaba, Application of a Probabilistic Decision Model to Airline Seat Inventory Control, Operations Research, 37 (1989), 183-197. |
[7] |
P. Brémaud, "Point Processes and Queues, Martingale Dynamics," Springer-Verlag, New York, 1981. |
[8] |
T. Chatwin, Optimal control of continuous-time terminal-value birth-and-death processes and airline overbooking, Naval Research Logistics, 43 (1996), 159-168.
doi: 10.1002/(SICI)1520-6750(199603)43:2<159::AID-NAV1>3.0.CO;2-9. |
[9] |
R. E. Chatwin, Multi-period airline overbooking with a single fare class, Operations Research, 46 (1998), 805-819.
doi: 10.1287/opre.46.6.805. |
[10] |
R. E. Chatwin, Continuous-time airline overbooking with time dependent fares and refunds, Transportation Science, 33 (1999), 182-191.
doi: 10.1287/trsc.33.2.182. |
[11] |
Y. Feng and G. Gallego, Optimal stopping times for end of season sales and optimal starting times for promotional fares, Management Science, 41 (1995), 1371-1391.
doi: 10.1287/mnsc.41.8.1371. |
[12] |
Y. Feng and B. Xiao, Maximizing revenue of perishable assets with risk analysis, Operations Research, 47 (1999), 337-341.
doi: 10.1287/opre.47.2.337. |
[13] |
Y. Feng and B. Xiao, Optimal policies of yield management with multiple predetermined prices, Operations Research, 48 (2000), 332-343.
doi: 10.1287/opre.48.2.332.13373. |
[14] |
Y. Gerchak, A. Tripathy and K. Wang, Co-procuction models with random functionality yields, IIE Trans, 28 (1996), 391-403.
doi: 10.1080/07408179608966286. |
[15] |
A. Hsu and Y. Bassok, Random yield and random demand in a production system with downward substitution, Operations Research, 47 (1999), 277-290.
doi: 10.1287/opre.47.2.277. |
[16] |
I. Karaesmen and G. van Ryzin, Overbooking with substitutable inventory classes, Operations Research, 52 (2004), 83-104.
doi: 10.1287/opre.1030.0079. |
[17] |
Z. L. Kevin, S. E. Spagniole and M. W. Stefan, Probabilistically optimized airline overbooking strategies, or "Anyone Willing to Take a Later Flight?!", The UMAP Journal, 23 (2002), 317-338. |
[18] |
L. Kosten, Een mathematisch model voor een reservingsprobleem, Statist Neerlandica, 14 (1960), 85-94.
doi: 10.1111/j.1467-9574.1960.tb00893.x. |
[19] |
Y. Liang, Solution to the continuous time dynamic yield management model, Transportation Science, 33 (1999), 117-123.
doi: 10.1287/trsc.33.1.117. |
[20] |
V. Liberman and U. Yechiali, On the hotel overbooking problem - an inventory system with stochastic cancellations, Management Science, 24 (1978), 1117-1126.
doi: 10.1287/mnsc.24.11.1117. |
[21] |
K. Littlewood, Forecasting and control of passengers, in "12th AGIFORS symposium Proceedings," (1972), 103-105. |
[22] |
M. Ignaccolo and G. Inturri, A Fuzz approach to overbooking in air transportation, Journal of Air Transportation Worldwide, 5 (2000), 19-38. |
[23] |
M. P. Schubmehl, W. M. Turner and D. M. Boylan, Models for evaluating airline overbooking, The UMAP Journal, 23 (2002), 301-316. |
[24] |
M. Rothstein, An airline Overbooking Model, Transportation Science, 5 (1971), 180-192.
doi: 10.1287/trsc.5.2.180. |
[25] |
B. Smith, J. Leimkuhler, R. Darrow and J. Samules, Yield management at american airlines, Interface, 1 (1992), 8-31. |
[26] |
J. Subramanian, S. Stidham and C. Lautenbacher, Airline yield management with overbooking, cancellation and no-shows, Transportation Science, 33 (1999), 136-146.
doi: 10.1287/trsc.33.2.147. |
[27] |
Y. Suzuki, An empirical analysis of the optimal overbooking policies for US major airlines, Transportation Research Part E: Logistics and Transportation Review, 38 (2002), 135-149.
doi: 10.1016/S1366-5545(01)00016-3. |
[28] |
Y. Suzuki, The net benefit of airline overbooking, Transportation Research Part E: Logistics and Transportation Review, 42 (2006), 1-19.
doi: 10.1016/j.tre.2004.09.001. |
show all references
References:
[1] |
J. Alstrup, S. Boas, O. B. G. Madsen and R. V. V. Vidal, Booking Policy for Flights with two types of passengers, European Journal of Operational Research, 27 (1986), 274-288.
doi: 10.1016/0377-2217(86)90325-5. |
[2] |
D. Arthur, S. Malone and O. Nir, Optimal overbooking, The UMAP Journal, 23 (2002), 283-300. |
[3] |
Y. Bassok, R. Anupindi and R. Akella, Single-period multiproduct inventory models with substitution, Operations Research, 47 (1999), 632-642.
doi: 10.1287/opre.47.4.632. |
[4] |
Z. P. Bayindir, N. Erkip and R. Güllü, Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint, Comput Oper Res, 34 (2007), 487-514.
doi: 10.1016/j.cor.2005.03.010. |
[5] |
P. P. Belobaba, Airline Yield Management: An Overview of Seat Inventory Control, Transportation Science, 21 (1987), 63-73.
doi: 10.1287/trsc.21.2.63. |
[6] |
P. P. Belobaba, Application of a Probabilistic Decision Model to Airline Seat Inventory Control, Operations Research, 37 (1989), 183-197. |
[7] |
P. Brémaud, "Point Processes and Queues, Martingale Dynamics," Springer-Verlag, New York, 1981. |
[8] |
T. Chatwin, Optimal control of continuous-time terminal-value birth-and-death processes and airline overbooking, Naval Research Logistics, 43 (1996), 159-168.
doi: 10.1002/(SICI)1520-6750(199603)43:2<159::AID-NAV1>3.0.CO;2-9. |
[9] |
R. E. Chatwin, Multi-period airline overbooking with a single fare class, Operations Research, 46 (1998), 805-819.
doi: 10.1287/opre.46.6.805. |
[10] |
R. E. Chatwin, Continuous-time airline overbooking with time dependent fares and refunds, Transportation Science, 33 (1999), 182-191.
doi: 10.1287/trsc.33.2.182. |
[11] |
Y. Feng and G. Gallego, Optimal stopping times for end of season sales and optimal starting times for promotional fares, Management Science, 41 (1995), 1371-1391.
doi: 10.1287/mnsc.41.8.1371. |
[12] |
Y. Feng and B. Xiao, Maximizing revenue of perishable assets with risk analysis, Operations Research, 47 (1999), 337-341.
doi: 10.1287/opre.47.2.337. |
[13] |
Y. Feng and B. Xiao, Optimal policies of yield management with multiple predetermined prices, Operations Research, 48 (2000), 332-343.
doi: 10.1287/opre.48.2.332.13373. |
[14] |
Y. Gerchak, A. Tripathy and K. Wang, Co-procuction models with random functionality yields, IIE Trans, 28 (1996), 391-403.
doi: 10.1080/07408179608966286. |
[15] |
A. Hsu and Y. Bassok, Random yield and random demand in a production system with downward substitution, Operations Research, 47 (1999), 277-290.
doi: 10.1287/opre.47.2.277. |
[16] |
I. Karaesmen and G. van Ryzin, Overbooking with substitutable inventory classes, Operations Research, 52 (2004), 83-104.
doi: 10.1287/opre.1030.0079. |
[17] |
Z. L. Kevin, S. E. Spagniole and M. W. Stefan, Probabilistically optimized airline overbooking strategies, or "Anyone Willing to Take a Later Flight?!", The UMAP Journal, 23 (2002), 317-338. |
[18] |
L. Kosten, Een mathematisch model voor een reservingsprobleem, Statist Neerlandica, 14 (1960), 85-94.
doi: 10.1111/j.1467-9574.1960.tb00893.x. |
[19] |
Y. Liang, Solution to the continuous time dynamic yield management model, Transportation Science, 33 (1999), 117-123.
doi: 10.1287/trsc.33.1.117. |
[20] |
V. Liberman and U. Yechiali, On the hotel overbooking problem - an inventory system with stochastic cancellations, Management Science, 24 (1978), 1117-1126.
doi: 10.1287/mnsc.24.11.1117. |
[21] |
K. Littlewood, Forecasting and control of passengers, in "12th AGIFORS symposium Proceedings," (1972), 103-105. |
[22] |
M. Ignaccolo and G. Inturri, A Fuzz approach to overbooking in air transportation, Journal of Air Transportation Worldwide, 5 (2000), 19-38. |
[23] |
M. P. Schubmehl, W. M. Turner and D. M. Boylan, Models for evaluating airline overbooking, The UMAP Journal, 23 (2002), 301-316. |
[24] |
M. Rothstein, An airline Overbooking Model, Transportation Science, 5 (1971), 180-192.
doi: 10.1287/trsc.5.2.180. |
[25] |
B. Smith, J. Leimkuhler, R. Darrow and J. Samules, Yield management at american airlines, Interface, 1 (1992), 8-31. |
[26] |
J. Subramanian, S. Stidham and C. Lautenbacher, Airline yield management with overbooking, cancellation and no-shows, Transportation Science, 33 (1999), 136-146.
doi: 10.1287/trsc.33.2.147. |
[27] |
Y. Suzuki, An empirical analysis of the optimal overbooking policies for US major airlines, Transportation Research Part E: Logistics and Transportation Review, 38 (2002), 135-149.
doi: 10.1016/S1366-5545(01)00016-3. |
[28] |
Y. Suzuki, The net benefit of airline overbooking, Transportation Research Part E: Logistics and Transportation Review, 42 (2006), 1-19.
doi: 10.1016/j.tre.2004.09.001. |
[1] |
Sandeep Dulluri, N. R. Srinivasa Raghavan. Revenue management via multi-product available to promise. Journal of Industrial and Management Optimization, 2007, 3 (3) : 457-479. doi: 10.3934/jimo.2007.3.457 |
[2] |
Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137 |
[3] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[4] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011 |
[5] |
Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial and Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585 |
[6] |
Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101 |
[7] |
M. B. Short, G. O. Mohler, P. J. Brantingham, G. E. Tita. Gang rivalry dynamics via coupled point process networks. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1459-1477. doi: 10.3934/dcdsb.2014.19.1459 |
[8] |
Vladimir Turetsky, Valery Y. Glizer. Optimal decision in a Statistical Process Control with cubic loss. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2903-2926. doi: 10.3934/jimo.2021096 |
[9] |
Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329 |
[10] |
Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial and Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1 |
[11] |
C.E.M. Pearce, J. Piantadosi, P.G. Howlett. On an optimal control policy for stormwater management in two connected dams. Journal of Industrial and Management Optimization, 2007, 3 (2) : 313-320. doi: 10.3934/jimo.2007.3.313 |
[12] |
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038 |
[13] |
Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 279-291. doi: 10.3934/naco.2021005 |
[14] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[15] |
Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335 |
[16] |
Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial and Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105 |
[17] |
Xing Tan, Yilan Gu, Jimmy Xiangji Huang. An ontological account of flow-control components in BPMN process models. Big Data & Information Analytics, 2017, 2 (2) : 177-189. doi: 10.3934/bdia.2017016 |
[18] |
Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100 |
[19] |
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067 |
[20] |
Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]