• Previous Article
    Finding a stable solution of a system of nonlinear equations arising from dynamic systems
  • JIMO Home
  • This Issue
  • Next Article
    A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function
April  2011, 7(2): 483-496. doi: 10.3934/jimo.2011.7.483

Optimality conditions for approximate solutions of vector optimization problems

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047, China

2. 

Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845

Received  October 2009 Revised  March 2011 Published  April 2011

In this paper, we introduce a new kind of properly approximate efficient solution of vector optimization problems. Some properties for this new class of approximate solutions are established. Also necessary and sufficient conditions via nonlinear scalarizations are obtained for properly approximate solutions. And under the assumption of cone subconvexlike functions, we derive linear scalarizations for properly approximate efficient solutions.
Citation: Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483
References:
[1]

E. M. Bednarczuk and M. J. Przybyla, The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors,, SIAM J. Optim., 18 (2007), 907.  doi: 10.1137/060658989.  Google Scholar

[2]

M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in multiobjective optimization,, Bull. Math. Soc. Sci. Math. Roumanie Tome, 99 (2008), 109.   Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[4]

S. Bolintinéanu, Vector variational principles: $\epsilon-$efficiency and scalar stationarity,, J. Convex Anal., 8 (2001), 71.   Google Scholar

[5]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM J. Control Optim., 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[6]

G. Y. Chen, X. X. Huang and X. M. Yang, "Vector Optimization. Set-Valued and Variational Analysis,", Lecture Notes in Econom. and Math. Systems \textbf{541}, 541 (2005).   Google Scholar

[7]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Func. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[8]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[9]

J. B. G. Frenk and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality,, J. Optim. Theory Appl., 102 (1999), 315.  doi: 10.1023/A:1021780423989.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", Springer-Verlag, (2003).   Google Scholar

[11]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numer. Func. Anal. Optim., 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[12]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM J. Control Optim., 47 (2008), 883.  doi: 10.1137/060672868.  Google Scholar

[13]

C. Gutiérrez, R. López and V. Novo, Generalized $\epsilon-$quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Anal., 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Math. Methods Oper. Res., 64 (2006), 165.  doi: 10.1007/s00186-006-0078-0.  Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, Optimality conditions via scalarization for a new $\epsilon$-efficiency concept in vector optimization problems,, European J. Oper. Res., 201 (2010), 11.  doi: 10.1016/j.ejor.2009.02.007.  Google Scholar

[17]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[18]

T. X. D. Ha, The Ekeland variational principle for Henig proper minimizers and super minimizers,, J. Math. Anal. Appl., 364 (2010), 156.  doi: 10.1016/j.jmaa.2009.10.065.  Google Scholar

[19]

S. Helbig, "On a new concept for $\epsilon$-efficency,", A Talk at Optimization Days 1992, (1992).   Google Scholar

[20]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[21]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming,, Bull. Soc. Math. France M\'em., 60 (1979), 57.   Google Scholar

[22]

J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.  doi: 10.1287/moor.4.1.79.  Google Scholar

[23]

S. Kutateladze, Convex $\epsilon-$programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, from, (1951), 481.   Google Scholar

[25]

J. C. Liu, $\epsilon-$properly efficient solutions to nondifferentiable multiobjective programming problems,, Appl. Math. Lett., 12 (1999), 109.  doi: 10.1016/S0893-9659(99)00087-7.  Google Scholar

[26]

Z. Li and S. Wang, $\epsilon$-approximate solutions in multiobjective optimization,, Optimization, 44 (1998), 161.  doi: 10.1080/02331939808844406.  Google Scholar

[27]

C. G. Liu, K. F. Ng and W. H. Yang, Merit functions in vector optimization,, Math. Program., 119 (2009), 215.  doi: 10.1016/j.colsurfa.2009.04.036.  Google Scholar

[28]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[29]

W. D. Rong and Y. N. Wu, $\epsilon$-weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[30]

W. D. Rong, $\epsilon-$efficiency in vector optimization problems with cone subconvexlikeness,, Acta Sci. Natur. Univ. NeiMongol., 28 (1997), 609.   Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[32]

I. Vályi, Approximate saddle-point theorems in vector optimization,, J. Optim. Theory Appl., 55 (1987), 435.  doi: 10.1007/BF00941179.  Google Scholar

[33]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[34]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

show all references

References:
[1]

E. M. Bednarczuk and M. J. Przybyla, The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors,, SIAM J. Optim., 18 (2007), 907.  doi: 10.1137/060658989.  Google Scholar

[2]

M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in multiobjective optimization,, Bull. Math. Soc. Sci. Math. Roumanie Tome, 99 (2008), 109.   Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[4]

S. Bolintinéanu, Vector variational principles: $\epsilon-$efficiency and scalar stationarity,, J. Convex Anal., 8 (2001), 71.   Google Scholar

[5]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM J. Control Optim., 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[6]

G. Y. Chen, X. X. Huang and X. M. Yang, "Vector Optimization. Set-Valued and Variational Analysis,", Lecture Notes in Econom. and Math. Systems \textbf{541}, 541 (2005).   Google Scholar

[7]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Func. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[8]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[9]

J. B. G. Frenk and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality,, J. Optim. Theory Appl., 102 (1999), 315.  doi: 10.1023/A:1021780423989.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", Springer-Verlag, (2003).   Google Scholar

[11]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numer. Func. Anal. Optim., 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[12]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM J. Control Optim., 47 (2008), 883.  doi: 10.1137/060672868.  Google Scholar

[13]

C. Gutiérrez, R. López and V. Novo, Generalized $\epsilon-$quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Anal., 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Math. Methods Oper. Res., 64 (2006), 165.  doi: 10.1007/s00186-006-0078-0.  Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, Optimality conditions via scalarization for a new $\epsilon$-efficiency concept in vector optimization problems,, European J. Oper. Res., 201 (2010), 11.  doi: 10.1016/j.ejor.2009.02.007.  Google Scholar

[17]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[18]

T. X. D. Ha, The Ekeland variational principle for Henig proper minimizers and super minimizers,, J. Math. Anal. Appl., 364 (2010), 156.  doi: 10.1016/j.jmaa.2009.10.065.  Google Scholar

[19]

S. Helbig, "On a new concept for $\epsilon$-efficency,", A Talk at Optimization Days 1992, (1992).   Google Scholar

[20]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[21]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming,, Bull. Soc. Math. France M\'em., 60 (1979), 57.   Google Scholar

[22]

J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.  doi: 10.1287/moor.4.1.79.  Google Scholar

[23]

S. Kutateladze, Convex $\epsilon-$programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, from, (1951), 481.   Google Scholar

[25]

J. C. Liu, $\epsilon-$properly efficient solutions to nondifferentiable multiobjective programming problems,, Appl. Math. Lett., 12 (1999), 109.  doi: 10.1016/S0893-9659(99)00087-7.  Google Scholar

[26]

Z. Li and S. Wang, $\epsilon$-approximate solutions in multiobjective optimization,, Optimization, 44 (1998), 161.  doi: 10.1080/02331939808844406.  Google Scholar

[27]

C. G. Liu, K. F. Ng and W. H. Yang, Merit functions in vector optimization,, Math. Program., 119 (2009), 215.  doi: 10.1016/j.colsurfa.2009.04.036.  Google Scholar

[28]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[29]

W. D. Rong and Y. N. Wu, $\epsilon$-weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[30]

W. D. Rong, $\epsilon-$efficiency in vector optimization problems with cone subconvexlikeness,, Acta Sci. Natur. Univ. NeiMongol., 28 (1997), 609.   Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[32]

I. Vályi, Approximate saddle-point theorems in vector optimization,, J. Optim. Theory Appl., 55 (1987), 435.  doi: 10.1007/BF00941179.  Google Scholar

[33]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[34]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[5]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[8]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[12]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[13]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[14]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[15]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[16]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[17]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[18]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[19]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[20]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]