April  2011, 7(2): 497-521. doi: 10.3934/jimo.2011.7.497

Finding a stable solution of a system of nonlinear equations arising from dynamic systems

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, United States

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

3. 

Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang, 421002, China

4. 

Department of Mathematics and Statistics, Minnesota State University Mankato, Mankato, MN 56001, United States

Received  August 2009 Revised  March 2011 Published  April 2011

In this paper, we present a new approach for finding a stable solution of a system of nonlinear equations arising from dynamical systems. We introduce the concept of stability functions and use this idea to construct stability solution models of several typical small signal stability problems in dynamical systems. Each model consists of a system of constrained semismooth equations. The advantage of the new models is twofold. Firstly, the stability requirement of dynamical systems is controlled by nonlinear inequalities. Secondly, the semismoothness property of the stability functions makes the models solvable by efficient numerical methods. We introduce smoothing functions for the stability functions and present a smoothing Newton method for solving the problems. Global and local quadratic convergence of the algorithm is established. Numerical examples from dynamical systems are also given to illustrate the efficiency of the new approach.
Citation: Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497
References:
[1]

F. Alvarado, I. Dobson and Y. Hu, Computation of closest bifurcations in power systems,, IEEE Trans. Power System, 9 (1994), 918. doi: 10.1109/59.317655. Google Scholar

[2]

C. A. Cañizares, Calculating optimal system parameters to maximize the distance to saddle-node bifurcation points,, IEEE Trans. Circuits and System, 45 (1998), 225. doi: 10.1109/81.662696. Google Scholar

[3]

X. Chen, H. Qi, L. Qi and K.-L. Teo, Smooth convex approximation to the maximum eigenvalue function,, J. of Global Optimization, 30 (2004), 253. doi: 10.1007/s10898-004-8271-2. Google Scholar

[4]

H. D. Chiang, I. Dobson and R. J. Thomas, On voltage in electric power systems,, IEEE Trans. Power Systems, 5 (1990), 601. doi: 10.1109/59.54571. Google Scholar

[5]

T. Coffey, C. T. Kelley and D. E. Keyes, Pseudo-transient continuation and differential-algebraic equations,, SIAM J. Sci. Comp., 25 (2003), 553. doi: 10.1137/S106482750241044X. Google Scholar

[6]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley, (1983). Google Scholar

[7]

H. Dan, N. Yamashita and M. Fukushima, Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions,, Optimization Methods and Software, 17 (2002), 605. doi: 10.1080/1055678021000049345. Google Scholar

[8]

G. Degla, An overview of semi-continuity results on the spectral radius and positivity,, J. Math. Anal. Appl., 338 (2008), 101. doi: 10.1016/j.jmaa.2007.05.011. Google Scholar

[9]

J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations,", SIAM, (1996). Google Scholar

[10]

P. Deuflhard, Adaptive pseudo-transient continuation for nonlinear steady state problems, ZIP-Report02-12(March 2002),, in, 35 (2004). Google Scholar

[11]

I. Dobson, An iterative method to compute the closest saddle node or Hopf bifurcation in multidimensional parameter space,, in, (1992), 2513. Google Scholar

[12]

I. Dobson and L. Lu, Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems,, IEEE Trans. Automatic Control, 37 (1992), 1616. doi: 10.1109/9.256397. Google Scholar

[13]

K. R. Fowler and C. T. Kelley, Pseudo-transient continuation for nonsmooth nonlinear equations,, SIAM J. Numer. Anal., 43 (2005), 1385. doi: 10.1137/S0036142903431298. Google Scholar

[14]

C. P. Gupta, R. K. Varma and S. C. Srivastava, A method to determine closest Hopf bifurcation in power systems considering exciter and load dynamics,, in, (1998), 293. Google Scholar

[15]

M. Hintermüller and M. Hinze, A SQP-semi-smooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints,, SIAM J. Optim, 16 (2006), 1177. doi: 10.1137/030601259. Google Scholar

[16]

C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations,", in, 16 (1995). Google Scholar

[17]

C. T. Kelley, "Iterative Methods for Optimization,", SIAM, (1999). Google Scholar

[18]

C. T. Kelley, "Solving Nonlinear Equations with Newton's Method,", in, 1 (2003). Google Scholar

[19]

C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation,, SIAM J. Numer. Anal., 35 (1998), 508. doi: 10.1137/S0036142996304796. Google Scholar

[20]

C. T. Kelley, Li-Zhi Liao, Liqun Qi, Moody T. Chu, J. P. Reese and C. Winton, Projected Pseudotransient continuation,, SIAM J. Numer. Nanl, 46 (2008), 3071. doi: 10.1137/07069866X. Google Scholar

[21]

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem and V. Vittal, Definition and classification of power system stability,, IEEE Transaction on Power Systems, 19 (2004), 1387. doi: 10.1109/TPWRS.2004.825981. Google Scholar

[22]

A. S. Lewis, Nonsmooth analysis of eigenvalues,, Math. Program., 84 (1999), 1. Google Scholar

[23]

A. S. Lewis and M. Overton, "Eigenvalue Optimization,", Acta Numerica, 5 (1996), 149. doi: 10.1017/S0962492900002646. Google Scholar

[24]

Y. Ma, H. Kawakami and C. K. Tse, Bifurcation analysis of switched dynamical systems with periodically moving borders,, IEEE Transactions on Circuits and Systems, 51 (2004), 1184. doi: 10.1109/TCSI.2004.829240. Google Scholar

[25]

Y. V. Makarov, Z. Y. Dong and D. J. Hill, A general method for small signal stability analysis,, IEEE Transaction on Power Systems, 13 (1998), 979. doi: 10.1109/59.709086. Google Scholar

[26]

R. Mifflin, Semismooth and semiconvex functions in constrained optimization,, SIAM J. Control Optim., 15 (1977), 957. doi: 10.1137/0315061. Google Scholar

[27]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solutions of Nonlinear Equations in Several Variables,", Academic Press, (1970). Google Scholar

[28]

F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function,, Math. Program, 89 (2000), 1. doi: 10.1007/PL00011388. Google Scholar

[29]

J. S. Pang, D. F. Sun and J. Sun, Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Cone Complementarity Problems,, Math. Oper. Res., 28 (2003), 39. doi: 10.1287/moor.28.1.39.14258. Google Scholar

[30]

H. Qi and L. Liao, A smoothing Newton method for extended vertical linear complementarity problems,, SIAM J. Matrix Anal. Appl., 21 (1999), 45. doi: 10.1137/S0895479897329837. Google Scholar

[31]

H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix,, SIAM J. Matrix Anal. Appl., 28 (2006), 360. doi: 10.1137/050624509. Google Scholar

[32]

H. Qi and X. Yang, Semismoothness of spectral functions,, SIAM J. Matrix Anal. Appl., 25 (2004), 766. doi: 10.1137/S0895479802417921. Google Scholar

[33]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Math. Oper. Res., 18 (1993), 227. doi: 10.1287/moor.18.1.227. Google Scholar

[34]

L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities,, Math. Program., 87 (2000), 1. Google Scholar

[35]

L. Qi and J. Sun, A nonsmooth version of Newton's method,, Math. Program., 58 (1993), 353. doi: 10.1007/BF01581275. Google Scholar

[36]

D. Sun and J. Sun, Semismooth matrix valued functions,, Math. Oper. Res., 27 (2002), 150. doi: 10.1287/moor.27.1.150.342. Google Scholar

[37]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM J. Numer Anal., 40 (2002), 2352. doi: 10.1137/S0036142901393814. Google Scholar

[38]

M. D. Smooke and R. M. Mattheij, On the solution of nonlinear two-point boundary value problem on successively refined grids,, Appl. Numer. Math., 1 (1985), 463. doi: i:10.1016/0168-9274(85)90032-7. Google Scholar

[39]

A. Shestakov and J. Milovich, "Applications of Pseudo-Transient Continuation and Newton-Krylov Methods of the Poisson-Boltzmann and Radiation Diffusion Equation,", Tech. report UCRL-JC-139339, (2000). Google Scholar

[40]

X. J. Tong and S. Zhou, A smoothing projected Newton-type method for semismooth equations with bound constraints,, Journal of Industrial Management Optimization, 1 (2005), 235. Google Scholar

[41]

V. Venkatasubramanian, H. Schattler and J. Zaborsky, Dynamics of large constrained nonlinear systems - a taxonomy theory,, Proc. IEEE, 83 (1995), 1530. doi: 10.1109/5.481633. Google Scholar

[42]

M. Ulbrich, Semismooth Newton Methods for operator equations in function spaces,, SIAM J. Optim., 13 (2002), 805. doi: 10.1137/S1052623400371569. Google Scholar

[43]

X. Wu, C. K. Tse, O. Dranga and J. Lu, Fast-scale instability of single-stage power-factor-correction of power supplies,, IEEE Transactions on Circuits and Systems, 53 (2006), 204. doi: 10.1109/TCSI.2005.854293. Google Scholar

show all references

References:
[1]

F. Alvarado, I. Dobson and Y. Hu, Computation of closest bifurcations in power systems,, IEEE Trans. Power System, 9 (1994), 918. doi: 10.1109/59.317655. Google Scholar

[2]

C. A. Cañizares, Calculating optimal system parameters to maximize the distance to saddle-node bifurcation points,, IEEE Trans. Circuits and System, 45 (1998), 225. doi: 10.1109/81.662696. Google Scholar

[3]

X. Chen, H. Qi, L. Qi and K.-L. Teo, Smooth convex approximation to the maximum eigenvalue function,, J. of Global Optimization, 30 (2004), 253. doi: 10.1007/s10898-004-8271-2. Google Scholar

[4]

H. D. Chiang, I. Dobson and R. J. Thomas, On voltage in electric power systems,, IEEE Trans. Power Systems, 5 (1990), 601. doi: 10.1109/59.54571. Google Scholar

[5]

T. Coffey, C. T. Kelley and D. E. Keyes, Pseudo-transient continuation and differential-algebraic equations,, SIAM J. Sci. Comp., 25 (2003), 553. doi: 10.1137/S106482750241044X. Google Scholar

[6]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley, (1983). Google Scholar

[7]

H. Dan, N. Yamashita and M. Fukushima, Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions,, Optimization Methods and Software, 17 (2002), 605. doi: 10.1080/1055678021000049345. Google Scholar

[8]

G. Degla, An overview of semi-continuity results on the spectral radius and positivity,, J. Math. Anal. Appl., 338 (2008), 101. doi: 10.1016/j.jmaa.2007.05.011. Google Scholar

[9]

J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations,", SIAM, (1996). Google Scholar

[10]

P. Deuflhard, Adaptive pseudo-transient continuation for nonlinear steady state problems, ZIP-Report02-12(March 2002),, in, 35 (2004). Google Scholar

[11]

I. Dobson, An iterative method to compute the closest saddle node or Hopf bifurcation in multidimensional parameter space,, in, (1992), 2513. Google Scholar

[12]

I. Dobson and L. Lu, Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems,, IEEE Trans. Automatic Control, 37 (1992), 1616. doi: 10.1109/9.256397. Google Scholar

[13]

K. R. Fowler and C. T. Kelley, Pseudo-transient continuation for nonsmooth nonlinear equations,, SIAM J. Numer. Anal., 43 (2005), 1385. doi: 10.1137/S0036142903431298. Google Scholar

[14]

C. P. Gupta, R. K. Varma and S. C. Srivastava, A method to determine closest Hopf bifurcation in power systems considering exciter and load dynamics,, in, (1998), 293. Google Scholar

[15]

M. Hintermüller and M. Hinze, A SQP-semi-smooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints,, SIAM J. Optim, 16 (2006), 1177. doi: 10.1137/030601259. Google Scholar

[16]

C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations,", in, 16 (1995). Google Scholar

[17]

C. T. Kelley, "Iterative Methods for Optimization,", SIAM, (1999). Google Scholar

[18]

C. T. Kelley, "Solving Nonlinear Equations with Newton's Method,", in, 1 (2003). Google Scholar

[19]

C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation,, SIAM J. Numer. Anal., 35 (1998), 508. doi: 10.1137/S0036142996304796. Google Scholar

[20]

C. T. Kelley, Li-Zhi Liao, Liqun Qi, Moody T. Chu, J. P. Reese and C. Winton, Projected Pseudotransient continuation,, SIAM J. Numer. Nanl, 46 (2008), 3071. doi: 10.1137/07069866X. Google Scholar

[21]

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem and V. Vittal, Definition and classification of power system stability,, IEEE Transaction on Power Systems, 19 (2004), 1387. doi: 10.1109/TPWRS.2004.825981. Google Scholar

[22]

A. S. Lewis, Nonsmooth analysis of eigenvalues,, Math. Program., 84 (1999), 1. Google Scholar

[23]

A. S. Lewis and M. Overton, "Eigenvalue Optimization,", Acta Numerica, 5 (1996), 149. doi: 10.1017/S0962492900002646. Google Scholar

[24]

Y. Ma, H. Kawakami and C. K. Tse, Bifurcation analysis of switched dynamical systems with periodically moving borders,, IEEE Transactions on Circuits and Systems, 51 (2004), 1184. doi: 10.1109/TCSI.2004.829240. Google Scholar

[25]

Y. V. Makarov, Z. Y. Dong and D. J. Hill, A general method for small signal stability analysis,, IEEE Transaction on Power Systems, 13 (1998), 979. doi: 10.1109/59.709086. Google Scholar

[26]

R. Mifflin, Semismooth and semiconvex functions in constrained optimization,, SIAM J. Control Optim., 15 (1977), 957. doi: 10.1137/0315061. Google Scholar

[27]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solutions of Nonlinear Equations in Several Variables,", Academic Press, (1970). Google Scholar

[28]

F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function,, Math. Program, 89 (2000), 1. doi: 10.1007/PL00011388. Google Scholar

[29]

J. S. Pang, D. F. Sun and J. Sun, Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Cone Complementarity Problems,, Math. Oper. Res., 28 (2003), 39. doi: 10.1287/moor.28.1.39.14258. Google Scholar

[30]

H. Qi and L. Liao, A smoothing Newton method for extended vertical linear complementarity problems,, SIAM J. Matrix Anal. Appl., 21 (1999), 45. doi: 10.1137/S0895479897329837. Google Scholar

[31]

H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix,, SIAM J. Matrix Anal. Appl., 28 (2006), 360. doi: 10.1137/050624509. Google Scholar

[32]

H. Qi and X. Yang, Semismoothness of spectral functions,, SIAM J. Matrix Anal. Appl., 25 (2004), 766. doi: 10.1137/S0895479802417921. Google Scholar

[33]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Math. Oper. Res., 18 (1993), 227. doi: 10.1287/moor.18.1.227. Google Scholar

[34]

L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities,, Math. Program., 87 (2000), 1. Google Scholar

[35]

L. Qi and J. Sun, A nonsmooth version of Newton's method,, Math. Program., 58 (1993), 353. doi: 10.1007/BF01581275. Google Scholar

[36]

D. Sun and J. Sun, Semismooth matrix valued functions,, Math. Oper. Res., 27 (2002), 150. doi: 10.1287/moor.27.1.150.342. Google Scholar

[37]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM J. Numer Anal., 40 (2002), 2352. doi: 10.1137/S0036142901393814. Google Scholar

[38]

M. D. Smooke and R. M. Mattheij, On the solution of nonlinear two-point boundary value problem on successively refined grids,, Appl. Numer. Math., 1 (1985), 463. doi: i:10.1016/0168-9274(85)90032-7. Google Scholar

[39]

A. Shestakov and J. Milovich, "Applications of Pseudo-Transient Continuation and Newton-Krylov Methods of the Poisson-Boltzmann and Radiation Diffusion Equation,", Tech. report UCRL-JC-139339, (2000). Google Scholar

[40]

X. J. Tong and S. Zhou, A smoothing projected Newton-type method for semismooth equations with bound constraints,, Journal of Industrial Management Optimization, 1 (2005), 235. Google Scholar

[41]

V. Venkatasubramanian, H. Schattler and J. Zaborsky, Dynamics of large constrained nonlinear systems - a taxonomy theory,, Proc. IEEE, 83 (1995), 1530. doi: 10.1109/5.481633. Google Scholar

[42]

M. Ulbrich, Semismooth Newton Methods for operator equations in function spaces,, SIAM J. Optim., 13 (2002), 805. doi: 10.1137/S1052623400371569. Google Scholar

[43]

X. Wu, C. K. Tse, O. Dranga and J. Lu, Fast-scale instability of single-stage power-factor-correction of power supplies,, IEEE Transactions on Circuits and Systems, 53 (2006), 204. doi: 10.1109/TCSI.2005.854293. Google Scholar

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[3]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[4]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[5]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[6]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[7]

Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21

[8]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[9]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[10]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[11]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[12]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[13]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[14]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[15]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[16]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[17]

Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235

[18]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[19]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[20]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

[Back to Top]