July  2011, 7(3): 523-529. doi: 10.3934/jimo.2011.7.523

On symmetric and self duality in vector optimization problem

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

Received  June 2010 Revised  March 2011 Published  June 2011

In this paper, we point out some errors in a recent paper of M.A.E.H.Kassen (Applied Mathematics and Computation 183(2006) 1121-1126). And a pair of the first-order symmetric dual model for vector optimization problem is proposed in this paper. Then, we prove the weak, strong and converse duality theorems for the formulated first-order symmetric dual programs under invexity conditions.
Citation: Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523
References:
[1]

B. D. Craven, Lagrangian conditions and quasiduality,, Bull. Austral. Math. Soc., 16 (1977), 325.  doi: 10.1017/S0004972700023431.  Google Scholar

[2]

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual nonlinear programs,, Pacific J. Math., 15 (1965), 809.   Google Scholar

[3]

W. S. Dorn, A symmetric dual theorem for quadratic programs,, J. Oper. Res. Soc. Japan, 2 (1960), 93.   Google Scholar

[4]

M. A. E.-H. Kassem, Symmetric and self duality in vector optimization problem,, Applied Mathematics and Computation, 183 (2006), 1121.  doi: 10.1016/j.amc.2006.05.131.  Google Scholar

[5]

Z. A. Khan and M. A. Hanson, On ratio invexity in mathematical programming,, J. Math. Anal. Appl., 205 (1997), 330.  doi: 10.1006/jmaa.1997.5180.  Google Scholar

[6]

D. S. Kim, Y. B. Yun and H. Kuk, Second-order symmetric and self-duality in multiobjective programming,, Applied Mathematical Letters, 10 (1997), 17.  doi: 10.1016/S0893-9659(97)00004-9.  Google Scholar

[7]

B. Mond, A symmetric dual theorem for nonlinear programs,, Quart. Appl. Math., 23 (1965), 265.   Google Scholar

[8]

B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective programming,, in, (1991), 137.   Google Scholar

[9]

T. Weir and B. Mond, Symmetric and self duality in multiple objective programming,, Asia-Pacific J. Oper. Res., 5 (1988), 124.   Google Scholar

[10]

X.-M. Yang and S.-H. Hou, Second-order symmetric duality in multiobjective programming,, Applied Mathematical Letters, 14 (2001), 587.  doi: 10.1016/S0893-9659(00)00198-1.  Google Scholar

show all references

References:
[1]

B. D. Craven, Lagrangian conditions and quasiduality,, Bull. Austral. Math. Soc., 16 (1977), 325.  doi: 10.1017/S0004972700023431.  Google Scholar

[2]

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual nonlinear programs,, Pacific J. Math., 15 (1965), 809.   Google Scholar

[3]

W. S. Dorn, A symmetric dual theorem for quadratic programs,, J. Oper. Res. Soc. Japan, 2 (1960), 93.   Google Scholar

[4]

M. A. E.-H. Kassem, Symmetric and self duality in vector optimization problem,, Applied Mathematics and Computation, 183 (2006), 1121.  doi: 10.1016/j.amc.2006.05.131.  Google Scholar

[5]

Z. A. Khan and M. A. Hanson, On ratio invexity in mathematical programming,, J. Math. Anal. Appl., 205 (1997), 330.  doi: 10.1006/jmaa.1997.5180.  Google Scholar

[6]

D. S. Kim, Y. B. Yun and H. Kuk, Second-order symmetric and self-duality in multiobjective programming,, Applied Mathematical Letters, 10 (1997), 17.  doi: 10.1016/S0893-9659(97)00004-9.  Google Scholar

[7]

B. Mond, A symmetric dual theorem for nonlinear programs,, Quart. Appl. Math., 23 (1965), 265.   Google Scholar

[8]

B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective programming,, in, (1991), 137.   Google Scholar

[9]

T. Weir and B. Mond, Symmetric and self duality in multiple objective programming,, Asia-Pacific J. Oper. Res., 5 (1988), 124.   Google Scholar

[10]

X.-M. Yang and S.-H. Hou, Second-order symmetric duality in multiobjective programming,, Applied Mathematical Letters, 14 (2001), 587.  doi: 10.1016/S0893-9659(00)00198-1.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[4]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[5]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[6]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[13]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[16]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[19]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[20]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]