July  2011, 7(3): 531-558. doi: 10.3934/jimo.2011.7.531

Developing a new data envelopment analysis model for customer value analysis

1. 

Department of Industrial Management, Faculty of Management and Accounting, Islamic Azad University-Karaj Branch, P. O. Box: 31485-313, Karaj, Iran, Iran, Iran

Received  March 2010 Revised  March 2011 Published  June 2011

This paper proposes an application of data envelopment analysis (DEA) to measure the value of customers. In order to distinguish between expectations and needs of profitable and unprofitable customers and to allocate marketing investments among them, customers are compared with each other and ranked in a customer value pyramid. To this end, we use a combination of the Banker, Charnes and Cooper (BCC) model [3], assurance region (AR) model, and cross-efficiency evaluation. A numerical example demonstrates the application of the proposed model in an Iranian manufacturing company.
Citation: Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531
References:
[1]

D. A. Aaker, V. Kumar and G. S. Day, "Marketing Research," John Wiley & Sons, New York, 2001.

[2]

J. Anderson and J. Narus, "Business Market Management: Understanding, Creating and Developing Value," 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 2004.

[3]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 30 (1984), 1078-1092. doi: 10.1287/mnsc.30.9.1078.

[4]

D. Bowman and D. Narayandas, Managing customer-initiated contacts with manufacturers: The impact on share of category requirements and word-of mouth behavior, Journal of Marketing Research, 38 (2001), 281-297. doi: 10.1509/jmkr.38.3.281.18863.

[5]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[6]

M. T. Chu, J. Z. Shyu and R. Khosla, Measuring the relative performance for leading fables firms by using data envelopment analysis, Journal of Intelligent Manufacturing, 19 (2008), 257-272. doi: 10.1007/s10845-008-0079-3.

[7]

R. Colombo and W. Jiang, A stochastic RFM model, Journal of Interactive Marketing, 13 (1999), 2-12. doi: 10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H.

[8]

W. W. Cooper, L. M. Seiford and K. Tone, "Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software," 2nd edition, Springer, New York, 2007.

[9]

J. Deichmann, A. Eshghi, D. Haughton, S. Sayek and N. Teebagy, Application of Multiple Adaptive Regression Splines (MARS) in direct response modeling, Journal of Interactive Marketing, 16 (2002), 15-27. doi: 10.1002/dir.10040.

[10]

J. Doyle and R. Green, Efficiency and cross efficiency in DEA: Derivations, meanings and the uses, Journal of the Operational Research Society, 45 (1994), 567-578.

[11]

P. Fader, B. Hardie and K. L. Lee, RFM and CLV: Using Iso-value curves for customer base analysis, Journal of Marketing Research, 42 (2005), 415-430. doi: 10.1509/jmkr.2005.42.4.415.

[12]

R. Garland, Segmenting retail banking customers, Journal of Financial Services Marketing, 10 (2005), 179-191. doi: 10.1057/palgrave.fsm.4770184.

[13]

F. Grönöl and M. Shi, Optimal mailing of catalogs: A new methodology using estimable structural dynamic programming models, Management Science, 44 (1998), 1249-1262. doi: 10.1287/mnsc.44.9.1249.

[14]

C. Grönroos, From marketing mix to relationship marketing: Towards a paradigm shift in marketing, Management Decision, 32 (1994), 4-20. doi: 10.1108/00251749410054774.

[15]

K. Ha, S. Cho and D. Maclachlan, Response models based on bagging neural networks, Journal of Interactive Marketing, 19 (2005), 17-30. doi: 10.1002/dir.20028.

[16]

L. K. Hansen and P. R. Salamon, Neural network ensembles, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 993-1001. doi: 10.1109/34.58871.

[17]

Z. Huanga, H. Chena, C. J. Hsua, W. H. Chenb and S. Wu, Credit rating analysis with support vector machines and neural networks: A market comparative study, Decision Support Systems, 37 (2004), 543-558. doi: 10.1016/S0167-9236(03)00086-1.

[18]

Y. Kim, W. N. Street, G. J. Russell and F. Menczer, Customer targeting: A neural network approach guided by genetic algorithms, Management Science, 51 (2005), 264-276. doi: 10.1287/mnsc.1040.0296.

[19]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis, European Journal of Operational Research, 154 (2004), 437-446. doi: 10.1016/S0377-2217(03)00180-2.

[20]

J. Liu, F. Y. Ding and V. Lall, Using data envelopment analysis to compare suppliers for supplier selection and performance improvement, Supply Chain Management: An International Journal, 5 (2000), 143-150.

[21]

L. Moutinho, B. Curry, F. Davies and P. Rita, "Neural Network in Marketing," Routledge, New York, 1994.

[22]

P. E. Pfeifer, The optimal ratio of acquisition and retention costs, Journal of Targeting, Measurement and Analysis for Marketing, 13 (2005), 179-188. doi: 10.1057/palgrave.jt.5740142.

[23]

D. Pitta, F. Franzak and D. Fowler, A strategic approach to building online customer loyalty: Integrating customer profitability tiers, Journal of Consumer Marketing, 23 (2006), 421-429. doi: 10.1108/07363760610712966.

[24]

C. K. Prahalad, "The Fortune at the Bottom of the Pyramid: Eradicating Poverty through Profits," Wharton School Publishing, Upper Saddle River, NJ, 2004.

[25]

W. Reinartz and V. Kumar, The mismanagement of customer loyalty, Harvard Business Review, (2002), 86-94.

[26]

T. L. Saaty, "Multicriteria Decision Making: The Analytic Hierarchy Process," 1988, revised and published by the author, original version published by McGraw-Hill, New York, 1980.

[27]

L. M. Seiford and J. Zhu, Identifying excesses and deficits in Chinese industrial productivity (1953-1990): A weighted data envelopment analysis approach, Omega, 26 (1998), 279-296. doi: 10.1016/S0305-0483(98)00011-5.

[28]

L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation, European Journal of Operational Research, 142 (2002), 16-20. doi: 10.1016/S0377-2217(01)00293-4.

[29]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman), Jossey-Bass, San Francisco, (1986), 73-105.

[30]

R. Shabahang, "Financial Accounting," Iranian Auditing Organization, 8th edition, (in Persian), 2003.

[31]

T. Sueyoshi, J. Shang and W. C. Chiang, A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP, European Journal of Operational Research, 199 (2009), 219-231. doi: 10.1016/j.ejor.2008.11.010.

[32]

R. G. Thompson, F. D. Singleton, J. R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas, Interfaces, 16 (1986), 35-49. doi: 10.1287/inte.16.6.35.

[33]

E. M. Van Raaij, The strategic value of customer profitability analysis, Marketing Intelligence & Planning, 23 (2005), 372-381. doi: 10.1108/02634500510603474.

[34]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis, Journal of Computational and Applied Mathematics, 223 (2009), 469-484. doi: 10.1016/j.cam.2008.01.022.

[35]

W. P. Wong and K. Y. Wong, A review on benchmarking of supply chain performance measures, Benchmarking: An International Journal, 15 (2008), 25-51.

[36]

Y. P. Yu, and S. Q. Cai, A new approach to customer targeting under condition of information shortage, Marketing Intelligence & Planning, 25 (2007), 343-359. doi: 10.1108/02634500710754583.

[37]

V. A. Zeithaml, R. T. Rust and K. N. Lemon, The customer pyramid: Creating and serving profitable customers, California Management Review, 43 (2001), 118-142.

[38]

J. Zhu and W. D. Cook, "Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis," A Problem-Solving Handbook, Springer, New York, US, 2007.

show all references

References:
[1]

D. A. Aaker, V. Kumar and G. S. Day, "Marketing Research," John Wiley & Sons, New York, 2001.

[2]

J. Anderson and J. Narus, "Business Market Management: Understanding, Creating and Developing Value," 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 2004.

[3]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 30 (1984), 1078-1092. doi: 10.1287/mnsc.30.9.1078.

[4]

D. Bowman and D. Narayandas, Managing customer-initiated contacts with manufacturers: The impact on share of category requirements and word-of mouth behavior, Journal of Marketing Research, 38 (2001), 281-297. doi: 10.1509/jmkr.38.3.281.18863.

[5]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[6]

M. T. Chu, J. Z. Shyu and R. Khosla, Measuring the relative performance for leading fables firms by using data envelopment analysis, Journal of Intelligent Manufacturing, 19 (2008), 257-272. doi: 10.1007/s10845-008-0079-3.

[7]

R. Colombo and W. Jiang, A stochastic RFM model, Journal of Interactive Marketing, 13 (1999), 2-12. doi: 10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H.

[8]

W. W. Cooper, L. M. Seiford and K. Tone, "Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software," 2nd edition, Springer, New York, 2007.

[9]

J. Deichmann, A. Eshghi, D. Haughton, S. Sayek and N. Teebagy, Application of Multiple Adaptive Regression Splines (MARS) in direct response modeling, Journal of Interactive Marketing, 16 (2002), 15-27. doi: 10.1002/dir.10040.

[10]

J. Doyle and R. Green, Efficiency and cross efficiency in DEA: Derivations, meanings and the uses, Journal of the Operational Research Society, 45 (1994), 567-578.

[11]

P. Fader, B. Hardie and K. L. Lee, RFM and CLV: Using Iso-value curves for customer base analysis, Journal of Marketing Research, 42 (2005), 415-430. doi: 10.1509/jmkr.2005.42.4.415.

[12]

R. Garland, Segmenting retail banking customers, Journal of Financial Services Marketing, 10 (2005), 179-191. doi: 10.1057/palgrave.fsm.4770184.

[13]

F. Grönöl and M. Shi, Optimal mailing of catalogs: A new methodology using estimable structural dynamic programming models, Management Science, 44 (1998), 1249-1262. doi: 10.1287/mnsc.44.9.1249.

[14]

C. Grönroos, From marketing mix to relationship marketing: Towards a paradigm shift in marketing, Management Decision, 32 (1994), 4-20. doi: 10.1108/00251749410054774.

[15]

K. Ha, S. Cho and D. Maclachlan, Response models based on bagging neural networks, Journal of Interactive Marketing, 19 (2005), 17-30. doi: 10.1002/dir.20028.

[16]

L. K. Hansen and P. R. Salamon, Neural network ensembles, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 993-1001. doi: 10.1109/34.58871.

[17]

Z. Huanga, H. Chena, C. J. Hsua, W. H. Chenb and S. Wu, Credit rating analysis with support vector machines and neural networks: A market comparative study, Decision Support Systems, 37 (2004), 543-558. doi: 10.1016/S0167-9236(03)00086-1.

[18]

Y. Kim, W. N. Street, G. J. Russell and F. Menczer, Customer targeting: A neural network approach guided by genetic algorithms, Management Science, 51 (2005), 264-276. doi: 10.1287/mnsc.1040.0296.

[19]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis, European Journal of Operational Research, 154 (2004), 437-446. doi: 10.1016/S0377-2217(03)00180-2.

[20]

J. Liu, F. Y. Ding and V. Lall, Using data envelopment analysis to compare suppliers for supplier selection and performance improvement, Supply Chain Management: An International Journal, 5 (2000), 143-150.

[21]

L. Moutinho, B. Curry, F. Davies and P. Rita, "Neural Network in Marketing," Routledge, New York, 1994.

[22]

P. E. Pfeifer, The optimal ratio of acquisition and retention costs, Journal of Targeting, Measurement and Analysis for Marketing, 13 (2005), 179-188. doi: 10.1057/palgrave.jt.5740142.

[23]

D. Pitta, F. Franzak and D. Fowler, A strategic approach to building online customer loyalty: Integrating customer profitability tiers, Journal of Consumer Marketing, 23 (2006), 421-429. doi: 10.1108/07363760610712966.

[24]

C. K. Prahalad, "The Fortune at the Bottom of the Pyramid: Eradicating Poverty through Profits," Wharton School Publishing, Upper Saddle River, NJ, 2004.

[25]

W. Reinartz and V. Kumar, The mismanagement of customer loyalty, Harvard Business Review, (2002), 86-94.

[26]

T. L. Saaty, "Multicriteria Decision Making: The Analytic Hierarchy Process," 1988, revised and published by the author, original version published by McGraw-Hill, New York, 1980.

[27]

L. M. Seiford and J. Zhu, Identifying excesses and deficits in Chinese industrial productivity (1953-1990): A weighted data envelopment analysis approach, Omega, 26 (1998), 279-296. doi: 10.1016/S0305-0483(98)00011-5.

[28]

L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation, European Journal of Operational Research, 142 (2002), 16-20. doi: 10.1016/S0377-2217(01)00293-4.

[29]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman), Jossey-Bass, San Francisco, (1986), 73-105.

[30]

R. Shabahang, "Financial Accounting," Iranian Auditing Organization, 8th edition, (in Persian), 2003.

[31]

T. Sueyoshi, J. Shang and W. C. Chiang, A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP, European Journal of Operational Research, 199 (2009), 219-231. doi: 10.1016/j.ejor.2008.11.010.

[32]

R. G. Thompson, F. D. Singleton, J. R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas, Interfaces, 16 (1986), 35-49. doi: 10.1287/inte.16.6.35.

[33]

E. M. Van Raaij, The strategic value of customer profitability analysis, Marketing Intelligence & Planning, 23 (2005), 372-381. doi: 10.1108/02634500510603474.

[34]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis, Journal of Computational and Applied Mathematics, 223 (2009), 469-484. doi: 10.1016/j.cam.2008.01.022.

[35]

W. P. Wong and K. Y. Wong, A review on benchmarking of supply chain performance measures, Benchmarking: An International Journal, 15 (2008), 25-51.

[36]

Y. P. Yu, and S. Q. Cai, A new approach to customer targeting under condition of information shortage, Marketing Intelligence & Planning, 25 (2007), 343-359. doi: 10.1108/02634500710754583.

[37]

V. A. Zeithaml, R. T. Rust and K. N. Lemon, The customer pyramid: Creating and serving profitable customers, California Management Review, 43 (2001), 118-142.

[38]

J. Zhu and W. D. Cook, "Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis," A Problem-Solving Handbook, Springer, New York, US, 2007.

[1]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[2]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[3]

Wendai Lv, Siping Ji. Atmospheric environmental quality assessment method based on analytic hierarchy process. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 941-955. doi: 10.3934/dcdss.2019063

[4]

Shiva Moslemi, Abolfazl Mirzazadeh. Performance evaluation of four-stage blood supply chain with feedback variables using NDEA cross-efficiency and entropy measures under IER uncertainty. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 379-401. doi: 10.3934/naco.2017024

[5]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[6]

Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023

[7]

Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014

[8]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[9]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[10]

Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022027

[11]

Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022058

[12]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

[13]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[14]

Angela Cadena, Adriana Marcucci, Juan F. Pérez, Hernando Durán, Hernando Mutis, Camilo Taútiva, Fernando Palacios. Efficiency analysis in electricity transmission utilities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 253-274. doi: 10.3934/jimo.2009.5.253

[15]

Cheng-Feng Hu, Hsiao-Fan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 79-91. doi: 10.3934/naco.2021052

[16]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[17]

Wenming Li, Yongge Tian, Ruixia Yuan. Statistical analysis of a linear regression model with restrictions and superfluous variables. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022079

[18]

Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 929-940. doi: 10.3934/dcdss.2019062

[19]

Sahar Vatankhah, Reza Samizadeh. Determining optimal marketing and pricing policies by considering customer lifetime network value in oligopoly markets. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021112

[20]

Deren Han, Xiaoming Yuan. Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis. Journal of Industrial and Management Optimization, 2011, 7 (2) : 347-364. doi: 10.3934/jimo.2011.7.347

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (11)

[Back to Top]