-
Previous Article
A three-stage DEA-SFA efficiency analysis of labour-owned and mercantile firms
- JIMO Home
- This Issue
-
Next Article
Developing a new data envelopment analysis model for customer value analysis
Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems
1. | Université Cadi Ayyad, Faculté Polydisciplinaire de Safi, B.P. 4162, Sidi Bouzid, Safi, Morocco |
2. | Laboratoire XLIM UMR-CNRS 6172, Université de Limoges Département de Mathématiques, 123 Avenue Albert Thomas 87060 Limoges Cedex, France, France |
References:
[1] |
A. Aboussoror and P. Loridan, Existence of solutions to two-level optimization problems with nonunique lower-level solutions, Journal of Mathematical Analysis and Applications, 254 (2001), 348-357.
doi: 10.1006/jmaa.2000.7001. |
[2] |
A. Aboussoror, Weak bilevel programming problems: Existence of solutions, in "Advances in Mathematics Research," 1, 83-92, Adv. Math. Res., Nova Sci. Publ., Hauppauge, NY, 2002. |
[3] |
A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method, Journal of Mathematical Analysis and Applications, 304 (2005), 399-408.
doi: 10.1016/j.jmaa.2004.09.033. |
[4] |
A. Aboussoror and A. Mansouri, Existence of solutions to weak nonlinear bilevel problems via MinSup and D.C. problems, RAIRO Operations Research, 42 (2008), 87-102.
doi: 10.1051/ro:2008012. |
[5] |
A. Aboussoror, Reverse convex programs: Stability and global optimality, Pacific Journal of Optimization, 5 (2009), 143-153. |
[6] |
A. Aboussoror and S. Adly, A Fenchel-Lagrange duality approach for a bilevel programming problem with extremal-value function, Journal of Optimization Theory and Applications, 149 (2011), 254-268.
doi: 10.1007/s10957-011-9831-5. |
[7] |
D. Azé, "Eléments d'Analyse Convexe et Variationnelle," Ellipses, Paris, 1997. |
[8] |
M. Breton, A. Alj and A. Haurie, Sequential Stackelberg equilibria in two-person games, Journal of Optimization Theory and Applications, 59 (1988), 71-97.
doi: 10.1007/BF00939867. |
[9] |
S. Dempe, "Foundations of Bilevel Programming," Nonconvex Optimization and its Applications, 61, Kluwer Academic Publishers, Dordrecht, 2002. |
[10] |
M. Dür, R. Horst and M. Locatelli, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications, 217 (1998), 637-649.
doi: 10.1006/jmaa.1997.5745. |
[11] |
J. Haberl, Maximization of generalized convex functionals in locally convex spaces, Journal of Optimization Theory and Applications, 121 (2004), 327-359.
doi: 10.1023/B:JOTA.0000037408.31141.e4. |
[12] |
J.-B. Hiriart-Urruty, From convex optimization to nonconvex optimization. Part 1: Necessary and sufficient conditions for global optimality, in "Nonsmooth Optimization and Related Topics," 219-239, Plenum Press, New York, 1989. |
[13] |
J.-B. Hiriart-Urruty, Conditions for global optimality 2, Journal of Global Optimization, 13 (1998), 349-367.
doi: 10.1023/A:1008365206132. |
[14] |
J.-B. Hiriart-Urruty and Y. S. Ledyaev, A note on the characterization of the global maxima of a (tangentially) convex function over a convex set, Journal of Convex Analysis, 3 (1996), 55-61. |
[15] |
R. Horst and H. Tuy, "Global Optimization, Deterministic Approaches," 2nd edition, Springer-Verlag, Berlin, 1993. |
[16] |
M. Laghdir, Optimality conditions in reverse convex optimization, Acta Mathematica Vietnamica, 28 (2003), 215-223. |
[17] |
R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints, Optimization, 18 (1987), 857-866.
doi: 10.1080/02331938708843300. |
[18] |
C. Michelot, "Caractérisation des Minima Locaux des Fonctions de la Classe D.C.," Technical Note, University of Dijon, France, 1987. |
[19] |
R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. |
[20] |
K. Shimizu, Y. Ishizuka and J. F. Bard, "Non Differentiable and Two-Level Mathematical Programming," Kluwer Academic Publishers, Boston, 1997. |
[21] |
K. Shimizu and Y. Ishizuka, Optimality conditions and algorithms for parameter design problems with two-level structure, IEEE Transactions on Automatic Control, 30 (1985), 986-993.
doi: 10.1109/TAC.1985.1103803. |
[22] |
A. Strekalovsky, On global maximum search of convex functions over a feasible set, Journal of Numerical Mathematics and Mathematical Physics, 3 (1993), 349-363. |
[23] |
A. Strekalovsky, Extremal problems on complements of convex sets, Cybernetics and System Analysis, 1 (1994), 88-100. |
[24] |
A. Strekalovsky, Global optimality conditions for nonconvex optimization, Journal of Global Optimization, 12 (1998), 415-434.
doi: 10.1023/A:1008277314050. |
[25] |
A. Strekalovsky, On convergence of a global search strategy for reverse convex problems, Journal of Applied Mathematics and Decision Sciences, 2005, 149-164.
doi: 10.1155/JAMDS.2005.149. |
[26] |
T. Tanino and T. Ogawa, An algorithm for solving two-level convex optimization problems, Int. J. Systems Sci., 15 (1984), 163-174.
doi: 10.1080/00207728408926552. |
[27] |
I. Tseveendorj, Reverse convex problems: An approach based on optimality conditions, Journal of Applied Mathematics and Decision Sciences, 2006, 1-16.
doi: 10.1155/JAMDS/2006/29023. |
[28] |
H. Tuy, Convex programs with an additional reverse convex constraint, Journal of Optimization Theory and Applications, 52 (1987), 463-486.
doi: 10.1007/BF00938217. |
[29] |
H. Tuy and N. V. Thuong, On the global minimization of a convex function under general non convex constraints, Applied Mathematics and Optimization, 18 (1988), 119-142.
doi: 10.1007/BF01443618. |
[30] |
H. Tuy, "Convex Analysis and Global Optimization," Nonconvex Optimization and its Applications, 22, Kluwer Academic Publishers, Dordrecht, 1998. |
show all references
References:
[1] |
A. Aboussoror and P. Loridan, Existence of solutions to two-level optimization problems with nonunique lower-level solutions, Journal of Mathematical Analysis and Applications, 254 (2001), 348-357.
doi: 10.1006/jmaa.2000.7001. |
[2] |
A. Aboussoror, Weak bilevel programming problems: Existence of solutions, in "Advances in Mathematics Research," 1, 83-92, Adv. Math. Res., Nova Sci. Publ., Hauppauge, NY, 2002. |
[3] |
A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method, Journal of Mathematical Analysis and Applications, 304 (2005), 399-408.
doi: 10.1016/j.jmaa.2004.09.033. |
[4] |
A. Aboussoror and A. Mansouri, Existence of solutions to weak nonlinear bilevel problems via MinSup and D.C. problems, RAIRO Operations Research, 42 (2008), 87-102.
doi: 10.1051/ro:2008012. |
[5] |
A. Aboussoror, Reverse convex programs: Stability and global optimality, Pacific Journal of Optimization, 5 (2009), 143-153. |
[6] |
A. Aboussoror and S. Adly, A Fenchel-Lagrange duality approach for a bilevel programming problem with extremal-value function, Journal of Optimization Theory and Applications, 149 (2011), 254-268.
doi: 10.1007/s10957-011-9831-5. |
[7] |
D. Azé, "Eléments d'Analyse Convexe et Variationnelle," Ellipses, Paris, 1997. |
[8] |
M. Breton, A. Alj and A. Haurie, Sequential Stackelberg equilibria in two-person games, Journal of Optimization Theory and Applications, 59 (1988), 71-97.
doi: 10.1007/BF00939867. |
[9] |
S. Dempe, "Foundations of Bilevel Programming," Nonconvex Optimization and its Applications, 61, Kluwer Academic Publishers, Dordrecht, 2002. |
[10] |
M. Dür, R. Horst and M. Locatelli, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications, 217 (1998), 637-649.
doi: 10.1006/jmaa.1997.5745. |
[11] |
J. Haberl, Maximization of generalized convex functionals in locally convex spaces, Journal of Optimization Theory and Applications, 121 (2004), 327-359.
doi: 10.1023/B:JOTA.0000037408.31141.e4. |
[12] |
J.-B. Hiriart-Urruty, From convex optimization to nonconvex optimization. Part 1: Necessary and sufficient conditions for global optimality, in "Nonsmooth Optimization and Related Topics," 219-239, Plenum Press, New York, 1989. |
[13] |
J.-B. Hiriart-Urruty, Conditions for global optimality 2, Journal of Global Optimization, 13 (1998), 349-367.
doi: 10.1023/A:1008365206132. |
[14] |
J.-B. Hiriart-Urruty and Y. S. Ledyaev, A note on the characterization of the global maxima of a (tangentially) convex function over a convex set, Journal of Convex Analysis, 3 (1996), 55-61. |
[15] |
R. Horst and H. Tuy, "Global Optimization, Deterministic Approaches," 2nd edition, Springer-Verlag, Berlin, 1993. |
[16] |
M. Laghdir, Optimality conditions in reverse convex optimization, Acta Mathematica Vietnamica, 28 (2003), 215-223. |
[17] |
R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints, Optimization, 18 (1987), 857-866.
doi: 10.1080/02331938708843300. |
[18] |
C. Michelot, "Caractérisation des Minima Locaux des Fonctions de la Classe D.C.," Technical Note, University of Dijon, France, 1987. |
[19] |
R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. |
[20] |
K. Shimizu, Y. Ishizuka and J. F. Bard, "Non Differentiable and Two-Level Mathematical Programming," Kluwer Academic Publishers, Boston, 1997. |
[21] |
K. Shimizu and Y. Ishizuka, Optimality conditions and algorithms for parameter design problems with two-level structure, IEEE Transactions on Automatic Control, 30 (1985), 986-993.
doi: 10.1109/TAC.1985.1103803. |
[22] |
A. Strekalovsky, On global maximum search of convex functions over a feasible set, Journal of Numerical Mathematics and Mathematical Physics, 3 (1993), 349-363. |
[23] |
A. Strekalovsky, Extremal problems on complements of convex sets, Cybernetics and System Analysis, 1 (1994), 88-100. |
[24] |
A. Strekalovsky, Global optimality conditions for nonconvex optimization, Journal of Global Optimization, 12 (1998), 415-434.
doi: 10.1023/A:1008277314050. |
[25] |
A. Strekalovsky, On convergence of a global search strategy for reverse convex problems, Journal of Applied Mathematics and Decision Sciences, 2005, 149-164.
doi: 10.1155/JAMDS.2005.149. |
[26] |
T. Tanino and T. Ogawa, An algorithm for solving two-level convex optimization problems, Int. J. Systems Sci., 15 (1984), 163-174.
doi: 10.1080/00207728408926552. |
[27] |
I. Tseveendorj, Reverse convex problems: An approach based on optimality conditions, Journal of Applied Mathematics and Decision Sciences, 2006, 1-16.
doi: 10.1155/JAMDS/2006/29023. |
[28] |
H. Tuy, Convex programs with an additional reverse convex constraint, Journal of Optimization Theory and Applications, 52 (1987), 463-486.
doi: 10.1007/BF00938217. |
[29] |
H. Tuy and N. V. Thuong, On the global minimization of a convex function under general non convex constraints, Applied Mathematics and Optimization, 18 (1988), 119-142.
doi: 10.1007/BF01443618. |
[30] |
H. Tuy, "Convex Analysis and Global Optimization," Nonconvex Optimization and its Applications, 22, Kluwer Academic Publishers, Dordrecht, 1998. |
[1] |
Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial and Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004 |
[2] |
Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9 |
[3] |
Hssaine Boualam, Ahmed Roubi. Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1897-1920. doi: 10.3934/jimo.2018128 |
[4] |
Zhi-Bin Deng, Ye Tian, Cheng Lu, Wen-Xun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial and Management Optimization, 2018, 14 (2) : 625-636. doi: 10.3934/jimo.2017064 |
[5] |
Hai Huyen Dam, Siow Yong Low, Sven Nordholm. Two-level optimization approach with accelerated proximal gradient for objective measures in sparse speech reconstruction. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021131 |
[6] |
Fatima Fali, Mustapha Moulaï. Solving discrete linear fractional bilevel programs with multiple objectives at the upper level. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022059 |
[7] |
Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189 |
[8] |
Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems and Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523 |
[9] |
Honglin Yang, Heping Dai, Hong Wan, Lingling Chu. Optimal credit periods under two-level trade credit. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1753-1767. doi: 10.3934/jimo.2019027 |
[10] |
R. Enkhbat, T. V. Gruzdeva, M. V. Barkova. D.C. programming approach for solving an applied ore-processing problem. Journal of Industrial and Management Optimization, 2018, 14 (2) : 613-623. doi: 10.3934/jimo.2017063 |
[11] |
Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic and Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945 |
[12] |
Yongchao Liu. Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 451-460. doi: 10.3934/naco.2018028 |
[13] |
Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197 |
[14] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[15] |
Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012 |
[16] |
Gaoxi Li, Liping Tang, Yingquan Huang, Xinmin Yang. Stability for semivectorial bilevel programs. Journal of Industrial and Management Optimization, 2022, 18 (1) : 427-438. doi: 10.3934/jimo.2020161 |
[17] |
Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198 |
[18] |
Qingjie Hu, Zhihao Ge, Yinnian He. Discontinuous Galerkin method for the Helmholtz transmission problem in two-level homogeneous media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2923-2948. doi: 10.3934/dcdsb.2020046 |
[19] |
Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151 |
[20] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]