July  2011, 7(3): 559-571. doi: 10.3934/jimo.2011.7.559

Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems

1. 

Université Cadi Ayyad, Faculté Polydisciplinaire de Safi, B.P. 4162, Sidi Bouzid, Safi, Morocco

2. 

Laboratoire XLIM UMR-CNRS 6172, Université de Limoges Département de Mathématiques, 123 Avenue Albert Thomas 87060 Limoges Cedex, France, France

Received  July 2010 Revised  March 2011 Published  June 2011

In this paper, for a class of weak bilevel programming problems we provide sufficient conditions guaranteeing the existence of global solutions. These conditions are based on the use of reverse convex and convex maximization problems.
Citation: Abdelmalek Aboussoror, Samir Adly, Vincent Jalby. Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 559-571. doi: 10.3934/jimo.2011.7.559
References:
[1]

A. Aboussoror and P. Loridan, Existence of solutions to two-level optimization problems with nonunique lower-level solutions,, Journal of Mathematical Analysis and Applications, 254 (2001), 348. doi: 10.1006/jmaa.2000.7001. Google Scholar

[2]

A. Aboussoror, Weak bilevel programming problems: Existence of solutions,, in, 1 (2002), 83. Google Scholar

[3]

A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method,, Journal of Mathematical Analysis and Applications, 304 (2005), 399. doi: 10.1016/j.jmaa.2004.09.033. Google Scholar

[4]

A. Aboussoror and A. Mansouri, Existence of solutions to weak nonlinear bilevel problems via MinSup and D.C. problems,, RAIRO Operations Research, 42 (2008), 87. doi: 10.1051/ro:2008012. Google Scholar

[5]

A. Aboussoror, Reverse convex programs: Stability and global optimality,, Pacific Journal of Optimization, 5 (2009), 143. Google Scholar

[6]

A. Aboussoror and S. Adly, A Fenchel-Lagrange duality approach for a bilevel programming problem with extremal-value function,, Journal of Optimization Theory and Applications, 149 (2011), 254. doi: 10.1007/s10957-011-9831-5. Google Scholar

[7]

D. Azé, "Eléments d'Analyse Convexe et Variationnelle,", Ellipses, (1997). Google Scholar

[8]

M. Breton, A. Alj and A. Haurie, Sequential Stackelberg equilibria in two-person games,, Journal of Optimization Theory and Applications, 59 (1988), 71. doi: 10.1007/BF00939867. Google Scholar

[9]

S. Dempe, "Foundations of Bilevel Programming,", Nonconvex Optimization and its Applications, 61 (2002). Google Scholar

[10]

M. Dür, R. Horst and M. Locatelli, Necessary and sufficient global optimality conditions for convex maximization revisited,, Journal of Mathematical Analysis and Applications, 217 (1998), 637. doi: 10.1006/jmaa.1997.5745. Google Scholar

[11]

J. Haberl, Maximization of generalized convex functionals in locally convex spaces,, Journal of Optimization Theory and Applications, 121 (2004), 327. doi: 10.1023/B:JOTA.0000037408.31141.e4. Google Scholar

[12]

J.-B. Hiriart-Urruty, From convex optimization to nonconvex optimization. Part 1: Necessary and sufficient conditions for global optimality,, in, (1989), 219. Google Scholar

[13]

J.-B. Hiriart-Urruty, Conditions for global optimality 2,, Journal of Global Optimization, 13 (1998), 349. doi: 10.1023/A:1008365206132. Google Scholar

[14]

J.-B. Hiriart-Urruty and Y. S. Ledyaev, A note on the characterization of the global maxima of a (tangentially) convex function over a convex set,, Journal of Convex Analysis, 3 (1996), 55. Google Scholar

[15]

R. Horst and H. Tuy, "Global Optimization, Deterministic Approaches," 2nd edition,, Springer-Verlag, (1993). Google Scholar

[16]

M. Laghdir, Optimality conditions in reverse convex optimization,, Acta Mathematica Vietnamica, 28 (2003), 215. Google Scholar

[17]

R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints,, Optimization, 18 (1987), 857. doi: 10.1080/02331938708843300. Google Scholar

[18]

C. Michelot, "Caractérisation des Minima Locaux des Fonctions de la Classe D.C.,", Technical Note, (1987). Google Scholar

[19]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). Google Scholar

[20]

K. Shimizu, Y. Ishizuka and J. F. Bard, "Non Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997). Google Scholar

[21]

K. Shimizu and Y. Ishizuka, Optimality conditions and algorithms for parameter design problems with two-level structure,, IEEE Transactions on Automatic Control, 30 (1985), 986. doi: 10.1109/TAC.1985.1103803. Google Scholar

[22]

A. Strekalovsky, On global maximum search of convex functions over a feasible set,, Journal of Numerical Mathematics and Mathematical Physics, 3 (1993), 349. Google Scholar

[23]

A. Strekalovsky, Extremal problems on complements of convex sets,, Cybernetics and System Analysis, 1 (1994), 88. Google Scholar

[24]

A. Strekalovsky, Global optimality conditions for nonconvex optimization,, Journal of Global Optimization, 12 (1998), 415. doi: 10.1023/A:1008277314050. Google Scholar

[25]

A. Strekalovsky, On convergence of a global search strategy for reverse convex problems,, Journal of Applied Mathematics and Decision Sciences, 2005 (): 149. doi: 10.1155/JAMDS.2005.149. Google Scholar

[26]

T. Tanino and T. Ogawa, An algorithm for solving two-level convex optimization problems,, Int. J. Systems Sci., 15 (1984), 163. doi: 10.1080/00207728408926552. Google Scholar

[27]

I. Tseveendorj, Reverse convex problems: An approach based on optimality conditions,, Journal of Applied Mathematics and Decision Sciences, 2006 (): 1. doi: 10.1155/JAMDS/2006/29023. Google Scholar

[28]

H. Tuy, Convex programs with an additional reverse convex constraint,, Journal of Optimization Theory and Applications, 52 (1987), 463. doi: 10.1007/BF00938217. Google Scholar

[29]

H. Tuy and N. V. Thuong, On the global minimization of a convex function under general non convex constraints,, Applied Mathematics and Optimization, 18 (1988), 119. doi: 10.1007/BF01443618. Google Scholar

[30]

H. Tuy, "Convex Analysis and Global Optimization,", Nonconvex Optimization and its Applications, 22 (1998). Google Scholar

show all references

References:
[1]

A. Aboussoror and P. Loridan, Existence of solutions to two-level optimization problems with nonunique lower-level solutions,, Journal of Mathematical Analysis and Applications, 254 (2001), 348. doi: 10.1006/jmaa.2000.7001. Google Scholar

[2]

A. Aboussoror, Weak bilevel programming problems: Existence of solutions,, in, 1 (2002), 83. Google Scholar

[3]

A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method,, Journal of Mathematical Analysis and Applications, 304 (2005), 399. doi: 10.1016/j.jmaa.2004.09.033. Google Scholar

[4]

A. Aboussoror and A. Mansouri, Existence of solutions to weak nonlinear bilevel problems via MinSup and D.C. problems,, RAIRO Operations Research, 42 (2008), 87. doi: 10.1051/ro:2008012. Google Scholar

[5]

A. Aboussoror, Reverse convex programs: Stability and global optimality,, Pacific Journal of Optimization, 5 (2009), 143. Google Scholar

[6]

A. Aboussoror and S. Adly, A Fenchel-Lagrange duality approach for a bilevel programming problem with extremal-value function,, Journal of Optimization Theory and Applications, 149 (2011), 254. doi: 10.1007/s10957-011-9831-5. Google Scholar

[7]

D. Azé, "Eléments d'Analyse Convexe et Variationnelle,", Ellipses, (1997). Google Scholar

[8]

M. Breton, A. Alj and A. Haurie, Sequential Stackelberg equilibria in two-person games,, Journal of Optimization Theory and Applications, 59 (1988), 71. doi: 10.1007/BF00939867. Google Scholar

[9]

S. Dempe, "Foundations of Bilevel Programming,", Nonconvex Optimization and its Applications, 61 (2002). Google Scholar

[10]

M. Dür, R. Horst and M. Locatelli, Necessary and sufficient global optimality conditions for convex maximization revisited,, Journal of Mathematical Analysis and Applications, 217 (1998), 637. doi: 10.1006/jmaa.1997.5745. Google Scholar

[11]

J. Haberl, Maximization of generalized convex functionals in locally convex spaces,, Journal of Optimization Theory and Applications, 121 (2004), 327. doi: 10.1023/B:JOTA.0000037408.31141.e4. Google Scholar

[12]

J.-B. Hiriart-Urruty, From convex optimization to nonconvex optimization. Part 1: Necessary and sufficient conditions for global optimality,, in, (1989), 219. Google Scholar

[13]

J.-B. Hiriart-Urruty, Conditions for global optimality 2,, Journal of Global Optimization, 13 (1998), 349. doi: 10.1023/A:1008365206132. Google Scholar

[14]

J.-B. Hiriart-Urruty and Y. S. Ledyaev, A note on the characterization of the global maxima of a (tangentially) convex function over a convex set,, Journal of Convex Analysis, 3 (1996), 55. Google Scholar

[15]

R. Horst and H. Tuy, "Global Optimization, Deterministic Approaches," 2nd edition,, Springer-Verlag, (1993). Google Scholar

[16]

M. Laghdir, Optimality conditions in reverse convex optimization,, Acta Mathematica Vietnamica, 28 (2003), 215. Google Scholar

[17]

R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints,, Optimization, 18 (1987), 857. doi: 10.1080/02331938708843300. Google Scholar

[18]

C. Michelot, "Caractérisation des Minima Locaux des Fonctions de la Classe D.C.,", Technical Note, (1987). Google Scholar

[19]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). Google Scholar

[20]

K. Shimizu, Y. Ishizuka and J. F. Bard, "Non Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997). Google Scholar

[21]

K. Shimizu and Y. Ishizuka, Optimality conditions and algorithms for parameter design problems with two-level structure,, IEEE Transactions on Automatic Control, 30 (1985), 986. doi: 10.1109/TAC.1985.1103803. Google Scholar

[22]

A. Strekalovsky, On global maximum search of convex functions over a feasible set,, Journal of Numerical Mathematics and Mathematical Physics, 3 (1993), 349. Google Scholar

[23]

A. Strekalovsky, Extremal problems on complements of convex sets,, Cybernetics and System Analysis, 1 (1994), 88. Google Scholar

[24]

A. Strekalovsky, Global optimality conditions for nonconvex optimization,, Journal of Global Optimization, 12 (1998), 415. doi: 10.1023/A:1008277314050. Google Scholar

[25]

A. Strekalovsky, On convergence of a global search strategy for reverse convex problems,, Journal of Applied Mathematics and Decision Sciences, 2005 (): 149. doi: 10.1155/JAMDS.2005.149. Google Scholar

[26]

T. Tanino and T. Ogawa, An algorithm for solving two-level convex optimization problems,, Int. J. Systems Sci., 15 (1984), 163. doi: 10.1080/00207728408926552. Google Scholar

[27]

I. Tseveendorj, Reverse convex problems: An approach based on optimality conditions,, Journal of Applied Mathematics and Decision Sciences, 2006 (): 1. doi: 10.1155/JAMDS/2006/29023. Google Scholar

[28]

H. Tuy, Convex programs with an additional reverse convex constraint,, Journal of Optimization Theory and Applications, 52 (1987), 463. doi: 10.1007/BF00938217. Google Scholar

[29]

H. Tuy and N. V. Thuong, On the global minimization of a convex function under general non convex constraints,, Applied Mathematics and Optimization, 18 (1988), 119. doi: 10.1007/BF01443618. Google Scholar

[30]

H. Tuy, "Convex Analysis and Global Optimization,", Nonconvex Optimization and its Applications, 22 (1998). Google Scholar

[1]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[2]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[3]

Zhi-Bin Deng, Ye Tian, Cheng Lu, Wen-Xun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial & Management Optimization, 2018, 14 (2) : 625-636. doi: 10.3934/jimo.2017064

[4]

Hssaine Boualam, Ahmed Roubi. Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1897-1920. doi: 10.3934/jimo.2018128

[5]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[6]

Honglin Yang, Heping Dai, Hong Wan, Lingling Chu. Optimal credit periods under two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019027

[7]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[8]

Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic & Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945

[9]

R. Enkhbat, T. V. Gruzdeva, M. V. Barkova. D.C. programming approach for solving an applied ore-processing problem. Journal of Industrial & Management Optimization, 2018, 14 (2) : 613-623. doi: 10.3934/jimo.2017063

[10]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[11]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[12]

Yongchao Liu. Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 451-460. doi: 10.3934/naco.2018028

[13]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[14]

Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198

[15]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[16]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[17]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[18]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[19]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[20]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

[Back to Top]