July  2011, 7(3): 593-606. doi: 10.3934/jimo.2011.7.593

Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time

1. 

Department of Distribution and Information Engineering, Hiroshima National College of Maritime Technology, Osakikamijima-Town, 725-0231, Japan

2. 

Department of Information Network and Communication, Kanagawa Institute of Technology, Atsugi-City, 243-0292, Japan

3. 

Department of Computer Science, Gunma University, Kiryu-City, 376-8515, Japan

4. 

Department of Information Sciences, Tokyo University of Science, Noda-City, 278-8510, Japan

Received  September 2010 Revised  May 2011 Published  June 2011

In this paper, we consider an $M/M/s$ queueing model where customers may abandon waiting for service and leave the system without receiving their services. We assume that impatient time on waiting for each customer is an independent and identically distributed nonnegative random variable with a general distribution where the probability distribution is light-tailed and unbounded. The main objective of this paper is to provide an approximation for the waiting time distribution in an analytically tractable form. To this end, we obtain the tail asymptotics of the waiting time distributions of served and impatient customers. By using the tail asymptotics, we show that the fairly good approximations of the waiting time distributions can be obtained in asymptotic region with low numerical complexity.
Citation: Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial and Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593
References:
[1]

S. Asmussen, "Applied Probability and Queues," 2nd ed., Applications of Mathematics (New York), 51, Springer-Verlag, New York, 2003.

[2]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers, Advances in Applied Probability, 16 (1984), 887-905. doi: 10.2307/1427345.

[3]

F. Baccelli and G. Hebuterne, On queues with impatient customers, in "Performance '81" (ed. F. J. Kylstra), North-Holland, Amsterdam-New York, 32 (1981), 159-179.

[4]

D. Y. Barrer, Queueing with impatient customers and indifferent clerks, Operations Research, 4 (1957), 644-649.

[5]

D. Y. Barrer, Queueing with impatient customers and ordered service, Operations Research, 4 (1957), 650-656. doi: 10.1287/opre.5.5.650.

[6]

A. Brandt and M. Brandt, On the $M(n)$/$M(n)$/$s$ queue with impatient calls, Performance Evaluation, 35 (1999), 1-18. doi: 10.1016/S0166-5316(98)00042-X.

[7]

A. Brandt and M. Brandt, Asymptotic results and a Markovian approximation for the $M(n)$/$M(n)$/$s+GI$ system, Queueing Systems, 41 (2002), 73-94. doi: 10.1023/A:1015781818360.

[8]

L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, Statistical analysis of a telephone call center: A queueing-science perspective, Journal of the American Statistical Association, 100 (2005), 36-50. doi: 10.1198/016214504000001808.

[9]

B. D. Choi and B. Kim, $MAP$/$M$/$c$ queue with constant impatient time, Mathematics of Operations Research, 29 (2004), 309-325. doi: 10.1287/moor.1030.0081.

[10]

D. J. Daley, General customer impatience in the queue $GI$/$G$/$1$, Journal of Applied Probability, 2 (1965), 186-205. doi: 10.2307/3211884.

[11]

A. G. de Kok and H. C. Tijms, A queueing system with impatient customers, Journal of Applied Probability, 22 (1985), 688-696. doi: 10.2307/3213871.

[12]

G. Evans, "Practical Numerical Analysis," John Wiley & Sons, 1996.

[13]

P. D. Finch, Deterministic customer impatience in the queueing system $GI$/$M$/$1$, Biometrika, 47 (1960), 45-52.

[14]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects, Manufacturing and Service Operations Management, 5 (2003), 79-141. doi: 10.1287/msom.5.2.79.16071.

[15]

O. Garnett, A. Mandelbaum and M. Reiman, Designing a call center with impatient customers, Manufacturing & Service Operations Management, 4 (2002), 208-227. doi: 10.1287/msom.4.3.208.7753.

[16]

R. B. Haugen and E. Skogan, Queueing systems with stochastic time out, IEEE Transactions on Communications, 28 (1980), 1984-1989. doi: 10.1109/TCOM.1980.1094632.

[17]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modeling," American Statistical Association and the Society for Industrial and Applied Mathematics, Philadelphia, American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[18]

A. Movaghar, On queueing with customer impatience until the beginning of service, Queueing Systems Theory Appl., 29 (1998), 337-350. doi: 10.1023/A:1019196416987.

[19]

C. Palm, Methods of judging the annoyance caused by congestion, Tele (English ed.), 2 (1953), 1-20.

[20]

R. E. Stanford, Reneging phenomena in single server queues, Mathematics of Operations Research, 4 (1979), 162-178. doi: 10.1287/moor.4.2.162.

[21]

W. Xiong, D. Jagerman and T. Altiok, $M$/$G$/$1$ queue with deterministic reneging times, Performance Evaluation, 65 (2008), 308-316. doi: 10.1016/j.peva.2007.07.003.

[22]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/$n$ + G queue, Queueing Systems, 51 (2005), 361-402. doi: 10.1007/s11134-005-3699-8.

show all references

References:
[1]

S. Asmussen, "Applied Probability and Queues," 2nd ed., Applications of Mathematics (New York), 51, Springer-Verlag, New York, 2003.

[2]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers, Advances in Applied Probability, 16 (1984), 887-905. doi: 10.2307/1427345.

[3]

F. Baccelli and G. Hebuterne, On queues with impatient customers, in "Performance '81" (ed. F. J. Kylstra), North-Holland, Amsterdam-New York, 32 (1981), 159-179.

[4]

D. Y. Barrer, Queueing with impatient customers and indifferent clerks, Operations Research, 4 (1957), 644-649.

[5]

D. Y. Barrer, Queueing with impatient customers and ordered service, Operations Research, 4 (1957), 650-656. doi: 10.1287/opre.5.5.650.

[6]

A. Brandt and M. Brandt, On the $M(n)$/$M(n)$/$s$ queue with impatient calls, Performance Evaluation, 35 (1999), 1-18. doi: 10.1016/S0166-5316(98)00042-X.

[7]

A. Brandt and M. Brandt, Asymptotic results and a Markovian approximation for the $M(n)$/$M(n)$/$s+GI$ system, Queueing Systems, 41 (2002), 73-94. doi: 10.1023/A:1015781818360.

[8]

L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, Statistical analysis of a telephone call center: A queueing-science perspective, Journal of the American Statistical Association, 100 (2005), 36-50. doi: 10.1198/016214504000001808.

[9]

B. D. Choi and B. Kim, $MAP$/$M$/$c$ queue with constant impatient time, Mathematics of Operations Research, 29 (2004), 309-325. doi: 10.1287/moor.1030.0081.

[10]

D. J. Daley, General customer impatience in the queue $GI$/$G$/$1$, Journal of Applied Probability, 2 (1965), 186-205. doi: 10.2307/3211884.

[11]

A. G. de Kok and H. C. Tijms, A queueing system with impatient customers, Journal of Applied Probability, 22 (1985), 688-696. doi: 10.2307/3213871.

[12]

G. Evans, "Practical Numerical Analysis," John Wiley & Sons, 1996.

[13]

P. D. Finch, Deterministic customer impatience in the queueing system $GI$/$M$/$1$, Biometrika, 47 (1960), 45-52.

[14]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects, Manufacturing and Service Operations Management, 5 (2003), 79-141. doi: 10.1287/msom.5.2.79.16071.

[15]

O. Garnett, A. Mandelbaum and M. Reiman, Designing a call center with impatient customers, Manufacturing & Service Operations Management, 4 (2002), 208-227. doi: 10.1287/msom.4.3.208.7753.

[16]

R. B. Haugen and E. Skogan, Queueing systems with stochastic time out, IEEE Transactions on Communications, 28 (1980), 1984-1989. doi: 10.1109/TCOM.1980.1094632.

[17]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modeling," American Statistical Association and the Society for Industrial and Applied Mathematics, Philadelphia, American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[18]

A. Movaghar, On queueing with customer impatience until the beginning of service, Queueing Systems Theory Appl., 29 (1998), 337-350. doi: 10.1023/A:1019196416987.

[19]

C. Palm, Methods of judging the annoyance caused by congestion, Tele (English ed.), 2 (1953), 1-20.

[20]

R. E. Stanford, Reneging phenomena in single server queues, Mathematics of Operations Research, 4 (1979), 162-178. doi: 10.1287/moor.4.2.162.

[21]

W. Xiong, D. Jagerman and T. Altiok, $M$/$G$/$1$ queue with deterministic reneging times, Performance Evaluation, 65 (2008), 308-316. doi: 10.1016/j.peva.2007.07.003.

[22]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/$n$ + G queue, Queueing Systems, 51 (2005), 361-402. doi: 10.1007/s11134-005-3699-8.

[1]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[2]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[3]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial and Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[4]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[5]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial and Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[6]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1369-1388. doi: 10.3934/jimo.2019007

[7]

Wenpin Tang, Xun Yu Zhou. Tail probability estimates of continuous-time simulated annealing processes. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022015

[8]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[9]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[10]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[11]

Yongjiang Guo, Yuantao Song. The (functional) law of the iterated logarithm of the sojourn time for a multiclass queue. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1049-1076. doi: 10.3934/jimo.2018192

[12]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial and Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[13]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030

[14]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the MAP/M/s+G queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2505-2532. doi: 10.3934/jimo.2021078

[15]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[16]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic and Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[17]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[18]

Ali Delavarkhalafi. On optimal stochastic jumps in multi server queue with impatient customers via stochastic control. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021030

[19]

Fang Li, Nung Kwan Yip. Long time behavior of some epidemic models. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 867-881. doi: 10.3934/dcdsb.2011.16.867

[20]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (4)

[Back to Top]