• Previous Article
    Performance analysis of a Geom/Geom/1 queueing system with variable input probability
  • JIMO Home
  • This Issue
  • Next Article
    Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization
July  2011, 7(3): 623-639. doi: 10.3934/jimo.2011.7.623

Performance of an efficient sleep mode operation for IEEE 802.16m

1. 

Department of Mathematics and Telecommunication Mathematics Research Center, Korea University, Seoul 136-701, South Korea

Received  September 2010 Revised  May 2011 Published  June 2011

Power saving is one of the important issues for battery-powered mobile station in mobile WiMAX. Both IEEE 802.16e and IEEE 802.16m standards define sleep mode operations for power saving of mobile stations. In this paper, we propose an efficient sleep mode operation for the IEEE 802.16m advanced mobile WiMAX. The proposed scheme takes advantages of sleep modes in both the IEEE 802.16e and IEEE 802.16m. This scheme has binary exponential sleep windows which guarantee the minimum length for effective power saving. The mobile station uses the T_AMS timer in the IEEE 802.16m so that the mobile station sends or receives data packets during the extendable listening window in the sleep mode. We mathematically analyze the proposed scheme by an embedded Markov chain to obtain the average message delay and the average power consumption of a mobile station. The analytical results match with the simulation results very well. The analytical results show that the power consumption of our scheme is better than those of the legacy sleep modes in the IEEE 802.16e and the IEEE 802.16m under the same delay bound.
Citation: Sangkyu Baek, Bong Dae Choi. Performance of an efficient sleep mode operation for IEEE 802.16m. Journal of Industrial & Management Optimization, 2011, 7 (3) : 623-639. doi: 10.3934/jimo.2011.7.623
References:
[1]

S. Baek, J. J. Son and B. D. Choi, Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN,, Proc. Communications Workshops, (2009).   Google Scholar

[2]

K. Han and S. Choi, Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems,, Proc. IEEE VTC 2006 Spring, 3 (2006), 1141.   Google Scholar

[3]

E. Hwang, Y. H. Lee, K. J. Kim, J. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16e,, IEICE Transactions on Communications, E92B (2009), 2809.   Google Scholar

[4]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with binary exponential traffic indications in the IEEE 802.16e/m,, Queueing Systems: Theory and Applications, 62 (2009), 197.   Google Scholar

[5]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with periodic traffic indications in the IEEE 802.16e/m,, IEEE Transactions on Vehicular Technology, 59 (2010), 319.  doi: 10.1109/TVT.2009.2032193.  Google Scholar

[6]

, "IEEE 802.16m Evaluation Methodology Document (EMD)," IEEE 802.16m-08/004r5,, 2009., 2009 ().   Google Scholar

[7]

, "IEEE P802.16m/D3,", 2009., 2009 ().   Google Scholar

[8]

, "IEEE Std. 802.16-2004: Part 16: IEEE Standard for Local and Metropolitan Area Networks: Air Interface for Fixed Broadband Wireless Access Systems,", 2004., 2004 ().   Google Scholar

[9]

, "IEEE Std. 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, and IEEE Std. 802.16-2004/Cor1-2005," Corrigendum 1,, 2005., 2005 ().   Google Scholar

[10]

S. Jin and W. Yue, Performance analysis and evaluation for power saving class III in IEEE 802.16e network,, Journal of Industrial and Management Optimization, 6 (2010), 691.  doi: 10.3934/jimo.2010.6.691.  Google Scholar

[11]

, "Keep-Awake Mechanism for 802.16m Sleep Mode," C802.16m-08/718,, 2008., 2008 ().   Google Scholar

[12]

L. Kong and D. H. K. Tsang, Performance study of power saving classes of type I and II in IEEE 802.16e,, Proc. IEEE Conference on Local Computer Networks, (2006), 20.  doi: 10.1109/LCN.2006.322094.  Google Scholar

[13]

, Sequans Communications,, Datasheet: SQN1130 System-on-Chip for WiMAX Mobile Stations, ().   Google Scholar

[14]

, "Sleep Mode for IEEE 802.16m System," C802.16m-08/688r1,, 2008., 2008 ().   Google Scholar

[15]

, "Sleep Mode Operation for IEEE802.16m," C802.16m-08/721r1,, 2008., 2008 ().   Google Scholar

[16]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation," Vol. 1, Vacation and Priority Systems, Part 1,, North-Holland Publishing Co., (1991).   Google Scholar

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN,, IEEE Communications Letters, 9 (2005), 595.  doi: 10.1109/LCOMM.2005.1461675.  Google Scholar

[18]

Y. Zhang and M. Fujise, Energy management in the IEEE 802.16e MAC,, IEEE Communications Letters, 10 (2006), 311.  doi: 10.1109/LCOMM.2006.1613757.  Google Scholar

show all references

References:
[1]

S. Baek, J. J. Son and B. D. Choi, Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN,, Proc. Communications Workshops, (2009).   Google Scholar

[2]

K. Han and S. Choi, Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems,, Proc. IEEE VTC 2006 Spring, 3 (2006), 1141.   Google Scholar

[3]

E. Hwang, Y. H. Lee, K. J. Kim, J. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16e,, IEICE Transactions on Communications, E92B (2009), 2809.   Google Scholar

[4]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with binary exponential traffic indications in the IEEE 802.16e/m,, Queueing Systems: Theory and Applications, 62 (2009), 197.   Google Scholar

[5]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with periodic traffic indications in the IEEE 802.16e/m,, IEEE Transactions on Vehicular Technology, 59 (2010), 319.  doi: 10.1109/TVT.2009.2032193.  Google Scholar

[6]

, "IEEE 802.16m Evaluation Methodology Document (EMD)," IEEE 802.16m-08/004r5,, 2009., 2009 ().   Google Scholar

[7]

, "IEEE P802.16m/D3,", 2009., 2009 ().   Google Scholar

[8]

, "IEEE Std. 802.16-2004: Part 16: IEEE Standard for Local and Metropolitan Area Networks: Air Interface for Fixed Broadband Wireless Access Systems,", 2004., 2004 ().   Google Scholar

[9]

, "IEEE Std. 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, and IEEE Std. 802.16-2004/Cor1-2005," Corrigendum 1,, 2005., 2005 ().   Google Scholar

[10]

S. Jin and W. Yue, Performance analysis and evaluation for power saving class III in IEEE 802.16e network,, Journal of Industrial and Management Optimization, 6 (2010), 691.  doi: 10.3934/jimo.2010.6.691.  Google Scholar

[11]

, "Keep-Awake Mechanism for 802.16m Sleep Mode," C802.16m-08/718,, 2008., 2008 ().   Google Scholar

[12]

L. Kong and D. H. K. Tsang, Performance study of power saving classes of type I and II in IEEE 802.16e,, Proc. IEEE Conference on Local Computer Networks, (2006), 20.  doi: 10.1109/LCN.2006.322094.  Google Scholar

[13]

, Sequans Communications,, Datasheet: SQN1130 System-on-Chip for WiMAX Mobile Stations, ().   Google Scholar

[14]

, "Sleep Mode for IEEE 802.16m System," C802.16m-08/688r1,, 2008., 2008 ().   Google Scholar

[15]

, "Sleep Mode Operation for IEEE802.16m," C802.16m-08/721r1,, 2008., 2008 ().   Google Scholar

[16]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation," Vol. 1, Vacation and Priority Systems, Part 1,, North-Holland Publishing Co., (1991).   Google Scholar

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN,, IEEE Communications Letters, 9 (2005), 595.  doi: 10.1109/LCOMM.2005.1461675.  Google Scholar

[18]

Y. Zhang and M. Fujise, Energy management in the IEEE 802.16e MAC,, IEEE Communications Letters, 10 (2006), 311.  doi: 10.1109/LCOMM.2006.1613757.  Google Scholar

[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[3]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[4]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[7]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[8]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[9]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[10]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[11]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[12]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[13]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[14]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[15]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[16]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[17]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[18]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[19]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[20]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]