• Previous Article
    Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis of a Geom/Geom/1 queueing system with variable input probability
July  2011, 7(3): 655-676. doi: 10.3934/jimo.2011.7.655

Analysis of the finite source retrial queues with server breakdowns and repairs

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing, China, China, China

Received  September 2010 Revised  May 2011 Published  June 2011

This paper is concerned with the queueing analysis as well as reliability evaluation of an $M/G/1//K$ retrial queue with a finite number of sources in which the server is subject to breakdowns and repairs. The server has a exponentially distributed life time and a generally distributed repair time. Our analysis extends previous work on this topic and includes the analysis of the arriving customer's distribution, the busy period, the waiting time process and main reliability characteristics. This queueing system and its variants could be used to model magnetic disk memory systems, star-like local area networks and other communication systems with detected or undetected breakdowns.
Citation: Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655
References:
[1]

A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443.   Google Scholar

[2]

B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.  doi: 10.1016/j.mcm.2004.02.046.  Google Scholar

[3]

J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.  doi: 10.1111/j.1467-9574.1994.tb01429.x.  Google Scholar

[4]

J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503.   Google Scholar

[5]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.  doi: 10.1007/BF02564721.  Google Scholar

[6]

J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.  doi: 10.1109/LCOMM.2007.070742.  Google Scholar

[7]

J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.  doi: 10.1016/j.jspi.2006.04.018.  Google Scholar

[8]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[9]

I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.   Google Scholar

[10]

V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.  doi: 10.1007/BF01158474.  Google Scholar

[11]

G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.  doi: 10.1016/S0377-2217(97)00170-7.  Google Scholar

[12]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[13]

G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.  doi: 10.1109/26.558699.  Google Scholar

[14]

N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.  doi: 10.1016/j.amc.2005.06.005.  Google Scholar

[15]

D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.  doi: 10.1016/S0169-7552(97)00126-8.  Google Scholar

[16]

H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.  doi: 10.1016/0377-2217(94)E0358-I.  Google Scholar

[17]

H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.  doi: 10.1002/ecja.4410680613.  Google Scholar

[18]

J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.  doi: 10.1007/s10958-006-0014-0.  Google Scholar

[19]

P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.  doi: 10.1109/49.634781.  Google Scholar

[20]

J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.   Google Scholar

[21]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[22]

J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[23]

T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.  doi: 10.1007/BF01158950.  Google Scholar

show all references

References:
[1]

A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443.   Google Scholar

[2]

B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.  doi: 10.1016/j.mcm.2004.02.046.  Google Scholar

[3]

J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.  doi: 10.1111/j.1467-9574.1994.tb01429.x.  Google Scholar

[4]

J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503.   Google Scholar

[5]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.  doi: 10.1007/BF02564721.  Google Scholar

[6]

J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.  doi: 10.1109/LCOMM.2007.070742.  Google Scholar

[7]

J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.  doi: 10.1016/j.jspi.2006.04.018.  Google Scholar

[8]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[9]

I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.   Google Scholar

[10]

V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.  doi: 10.1007/BF01158474.  Google Scholar

[11]

G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.  doi: 10.1016/S0377-2217(97)00170-7.  Google Scholar

[12]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[13]

G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.  doi: 10.1109/26.558699.  Google Scholar

[14]

N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.  doi: 10.1016/j.amc.2005.06.005.  Google Scholar

[15]

D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.  doi: 10.1016/S0169-7552(97)00126-8.  Google Scholar

[16]

H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.  doi: 10.1016/0377-2217(94)E0358-I.  Google Scholar

[17]

H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.  doi: 10.1002/ecja.4410680613.  Google Scholar

[18]

J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.  doi: 10.1007/s10958-006-0014-0.  Google Scholar

[19]

P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.  doi: 10.1109/49.634781.  Google Scholar

[20]

J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.   Google Scholar

[21]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[22]

J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[23]

T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.  doi: 10.1007/BF01158950.  Google Scholar

[1]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[2]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[3]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[6]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[7]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[8]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[9]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[10]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[11]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[12]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[13]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[14]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[15]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[16]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[17]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[18]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[19]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]