-
Previous Article
Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network
- JIMO Home
- This Issue
-
Next Article
Performance analysis of a Geom/Geom/1 queueing system with variable input probability
Analysis of the finite source retrial queues with server breakdowns and repairs
1. | Department of Mathematics, Beijing Jiaotong University, 100044 Beijing, China, China, China |
References:
[1] |
A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443. Google Scholar |
[2] |
B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.
doi: 10.1016/j.mcm.2004.02.046. |
[3] |
J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.
doi: 10.1111/j.1467-9574.1994.tb01429.x. |
[4] |
J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503. Google Scholar |
[5] |
J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.
doi: 10.1007/BF02564721. |
[6] |
J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.
doi: 10.1109/LCOMM.2007.070742. |
[7] |
J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.
doi: 10.1016/j.jspi.2006.04.018. |
[8] |
J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-78725-9. |
[9] |
I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.
|
[10] |
V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.
doi: 10.1007/BF01158474. |
[11] |
G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.
doi: 10.1016/S0377-2217(97)00170-7. |
[12] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997). Google Scholar |
[13] |
G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.
doi: 10.1109/26.558699. |
[14] |
N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.
doi: 10.1016/j.amc.2005.06.005. |
[15] |
D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.
doi: 10.1016/S0169-7552(97)00126-8. |
[16] |
H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.
doi: 10.1016/0377-2217(94)E0358-I. |
[17] |
H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.
doi: 10.1002/ecja.4410680613. |
[18] |
J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.
doi: 10.1007/s10958-006-0014-0. |
[19] |
P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.
doi: 10.1109/49.634781. |
[20] |
J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.
|
[21] |
J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.
doi: 10.1023/A:1010918926884. |
[22] |
J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.
doi: 10.1016/j.ejor.2007.04.054. |
[23] |
T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.
doi: 10.1007/BF01158950. |
show all references
References:
[1] |
A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443. Google Scholar |
[2] |
B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.
doi: 10.1016/j.mcm.2004.02.046. |
[3] |
J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.
doi: 10.1111/j.1467-9574.1994.tb01429.x. |
[4] |
J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503. Google Scholar |
[5] |
J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.
doi: 10.1007/BF02564721. |
[6] |
J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.
doi: 10.1109/LCOMM.2007.070742. |
[7] |
J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.
doi: 10.1016/j.jspi.2006.04.018. |
[8] |
J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-78725-9. |
[9] |
I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.
|
[10] |
V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.
doi: 10.1007/BF01158474. |
[11] |
G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.
doi: 10.1016/S0377-2217(97)00170-7. |
[12] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997). Google Scholar |
[13] |
G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.
doi: 10.1109/26.558699. |
[14] |
N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.
doi: 10.1016/j.amc.2005.06.005. |
[15] |
D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.
doi: 10.1016/S0169-7552(97)00126-8. |
[16] |
H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.
doi: 10.1016/0377-2217(94)E0358-I. |
[17] |
H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.
doi: 10.1002/ecja.4410680613. |
[18] |
J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.
doi: 10.1007/s10958-006-0014-0. |
[19] |
P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.
doi: 10.1109/49.634781. |
[20] |
J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.
|
[21] |
J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.
doi: 10.1023/A:1010918926884. |
[22] |
J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.
doi: 10.1016/j.ejor.2007.04.054. |
[23] |
T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.
doi: 10.1007/BF01158950. |
[1] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[2] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[3] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[6] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[7] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[8] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[9] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[10] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[11] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[12] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[13] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[14] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[15] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 |
[16] |
Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020 doi: 10.3934/mfc.2021001 |
[17] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[18] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[19] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[20] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]