• Previous Article
    Performance evaluation of a power saving mechanism in IEEE 802.16 wireless MANs with bi-directional traffic
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network
July  2011, 7(3): 699-716. doi: 10.3934/jimo.2011.7.699

Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system

1. 

Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  September 2010 Revised  May 2011 Published  June 2011

In a Peer-to-Peer (P2P) based video streaming system such as Coolstreaming, a single video stream is decomposed into multiple sub-streams. A client-peer node receives the sub-streams from multiple parent-peer nodes, combining them into the original video stream. Each client-peer node has a synchronization buffer and a cache buffer. Data blocks are stored in the synchronization buffer in a sub-stream basis, and then forwarded into the cache buffer according to their sequence numbers. In this buffering system, data-block synchronization plays a crucial role to guarantee video quality. In this paper, we consider the performance of data-block synchronization scheme with which data blocks are simultaneously forwarded just after all the data blocks composing a macro data block arrive at the synchronization buffer. We model the synchronization buffer as a multiple-buffer queueing system with homogeneous Poisson arrival processes, deriving the mean forwarding interval. We also consider the frame loss probability for multiple-path video streaming, investigating how the number of sub-streams decreases the frame loss probability. Numerical examples show that increasing the number of sub-streams makes the average forwarding interval large, while the frame loss probability at the bottleneck router is improved. It is also shown that increasing the synchronization buffer decreases the average forwarding interval.
Citation: Sho Nanao, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system. Journal of Industrial & Management Optimization, 2011, 7 (3) : 699-716. doi: 10.3934/jimo.2011.7.699
References:
[1]

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-Bandwidth Content Distribution in Cooperative Environments,", Proceedings of SOSP, (2003), 292.   Google Scholar

[2]

D. Jurca, J. Chakareski, J.-P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[3]

K. Kirihara, H. Masuyama, S. Kasahara and Y. Takahashi, "Performance Analysis of a Decentralized Content Delivery System with FEC Recovery,", Advances in Queueing Theory and Network Applications, (2009), 265.   Google Scholar

[4]

B. Li, S. Xie, G. Y. Keung and X. Zhang, Coolstreaming: Design, theory, and practice,, IEEE Transactions on Multimedia, 9 (2007), 1661.  doi: 10.1109/TMM.2007.907469.  Google Scholar

[5]

B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu and X. Zhang, "Inside the New Coolstreaming: Principles, Measurements and Performance Implications,", Proceedings of IEEE INFOCOM, (2008), 1031.  doi: 10.1109/INFOCOM.2008.157.  Google Scholar

[6]

B. Li and H. Yin, Peer-to-peer live video streaming on the internet: Issues, existing approaches, and challenges,, IEEE Communications Magazine, 45 (2007), 94.  doi: 10.1109/MCOM.2007.374425.  Google Scholar

[7]

V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sripanidkulchai, "Distributing Streaming Media Content Using Cooperative Networking,", Proceedings of NOSSDAV, (2002), 177.   Google Scholar

[8]

, PPlive,, \url{http://www.pplive.com}., ().   Google Scholar

[9]

, Sopcast,, \url{http://www.sopcast.org}., ().   Google Scholar

show all references

References:
[1]

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-Bandwidth Content Distribution in Cooperative Environments,", Proceedings of SOSP, (2003), 292.   Google Scholar

[2]

D. Jurca, J. Chakareski, J.-P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[3]

K. Kirihara, H. Masuyama, S. Kasahara and Y. Takahashi, "Performance Analysis of a Decentralized Content Delivery System with FEC Recovery,", Advances in Queueing Theory and Network Applications, (2009), 265.   Google Scholar

[4]

B. Li, S. Xie, G. Y. Keung and X. Zhang, Coolstreaming: Design, theory, and practice,, IEEE Transactions on Multimedia, 9 (2007), 1661.  doi: 10.1109/TMM.2007.907469.  Google Scholar

[5]

B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu and X. Zhang, "Inside the New Coolstreaming: Principles, Measurements and Performance Implications,", Proceedings of IEEE INFOCOM, (2008), 1031.  doi: 10.1109/INFOCOM.2008.157.  Google Scholar

[6]

B. Li and H. Yin, Peer-to-peer live video streaming on the internet: Issues, existing approaches, and challenges,, IEEE Communications Magazine, 45 (2007), 94.  doi: 10.1109/MCOM.2007.374425.  Google Scholar

[7]

V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sripanidkulchai, "Distributing Streaming Media Content Using Cooperative Networking,", Proceedings of NOSSDAV, (2002), 177.   Google Scholar

[8]

, PPlive,, \url{http://www.pplive.com}., ().   Google Scholar

[9]

, Sopcast,, \url{http://www.sopcast.org}., ().   Google Scholar

[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

[Back to Top]