-
Previous Article
Frame-bound priority scheduling in discrete-time queueing systems
- JIMO Home
- This Issue
-
Next Article
Partially shared buffers with full or mixed priority
Stability of a retrial queueing network with different classes of customers and restricted resource pooling
1. | Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, South Korea |
References:
[1] |
M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems Theory Appl., 28 (1998), 7-31.
doi: 10.1023/A:1019182619288. |
[2] |
B. D. Choi and B. Kim, Non-ergodicity criteria for denumerable continuous time Markov processes, Operations Research Letters, 32 (2004), 574-580.
doi: 10.1016/j.orl.2004.03.001. |
[3] |
J. G. Dai, On positive Harris recurrence of multiclass queueing network: A unified approach via fluid limit models, Annals of Applied Probability, 5 (1995), 49-77.
doi: 10.1214/aoap/1177004828. |
[4] |
J. G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks, Annals of Applied Probability, 6 (1996), 751-757.
doi: 10.1214/aoap/1034968225. |
[5] |
J. G. Dai, J. J. Hasenbein and B. Kim, Stability of join-the-shortest-queue networks, Queueing Systems, 57 (2007), 129-145.
doi: 10.1007/s11134-007-9046-5. |
[6] |
G. I. Falin, A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.
doi: 10.1007/BF01158472. |
[7] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues," Chapman & Hall, London, 1997. |
[8] |
R. Foley and D. McDonald, Join the shortest queue: Stability and exact asymptotics, Ann. Appl. Probab., 11 (2001), 569-607.
doi: 10.1214/aoap/1015345342. |
[9] |
S. Foss and N. Chernova, On the stability of a partially accessible multi-station queue with state-dependent routing, Queueing Systems Theory Appl., 29 (1998), 55-73.
doi: 10.1023/A:1019175812444. |
[10] |
Q.-M. He, H. Li and Y. Q. Zhao, Ergodicity of the $BMAP$/$PH$/$s$/$s+K$ retrial queue PH-retrial times, Queueing Systems Theory Appl., 35 (2000), 323-247.
doi: 10.1023/A:1019110631467. |
[11] |
B. Kim and I. Lee, Tests for nonergodicity of denumerable continuous time Markov processes, Computers and Mathematics with Applications, 55 (2008), 1310-1321.
doi: 10.1016/j.camwa.2007.07.003. |
[12] |
I. A. Kurkova, A load-balanced network with two servers, Queueing Systems, 37 (2001), 379-389.
doi: 10.1023/A:1010841517511. |
[13] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, Performance analysis of optical burst switched networks with limited-range wavelength conversion, retransmission and burst segmentation, Journal of the Operations Research Society of Japan, 52 (2009), 58-74. |
[14] |
Yu. M. Sukhov and N. D. Vvedenskaya, Fast Jackson networks with dynamic routing, Problems of Information Transmission, 38 (2002), 136-153.
doi: 10.1023/A:1020010710507. |
[15] |
T. Yang and J. G. C. Templeton, A survey of retrial queues, Queueing Systems Theory Appl., 2 (1987), 201-233.
doi: 10.1007/BF01158899. |
show all references
References:
[1] |
M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems Theory Appl., 28 (1998), 7-31.
doi: 10.1023/A:1019182619288. |
[2] |
B. D. Choi and B. Kim, Non-ergodicity criteria for denumerable continuous time Markov processes, Operations Research Letters, 32 (2004), 574-580.
doi: 10.1016/j.orl.2004.03.001. |
[3] |
J. G. Dai, On positive Harris recurrence of multiclass queueing network: A unified approach via fluid limit models, Annals of Applied Probability, 5 (1995), 49-77.
doi: 10.1214/aoap/1177004828. |
[4] |
J. G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks, Annals of Applied Probability, 6 (1996), 751-757.
doi: 10.1214/aoap/1034968225. |
[5] |
J. G. Dai, J. J. Hasenbein and B. Kim, Stability of join-the-shortest-queue networks, Queueing Systems, 57 (2007), 129-145.
doi: 10.1007/s11134-007-9046-5. |
[6] |
G. I. Falin, A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.
doi: 10.1007/BF01158472. |
[7] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues," Chapman & Hall, London, 1997. |
[8] |
R. Foley and D. McDonald, Join the shortest queue: Stability and exact asymptotics, Ann. Appl. Probab., 11 (2001), 569-607.
doi: 10.1214/aoap/1015345342. |
[9] |
S. Foss and N. Chernova, On the stability of a partially accessible multi-station queue with state-dependent routing, Queueing Systems Theory Appl., 29 (1998), 55-73.
doi: 10.1023/A:1019175812444. |
[10] |
Q.-M. He, H. Li and Y. Q. Zhao, Ergodicity of the $BMAP$/$PH$/$s$/$s+K$ retrial queue PH-retrial times, Queueing Systems Theory Appl., 35 (2000), 323-247.
doi: 10.1023/A:1019110631467. |
[11] |
B. Kim and I. Lee, Tests for nonergodicity of denumerable continuous time Markov processes, Computers and Mathematics with Applications, 55 (2008), 1310-1321.
doi: 10.1016/j.camwa.2007.07.003. |
[12] |
I. A. Kurkova, A load-balanced network with two servers, Queueing Systems, 37 (2001), 379-389.
doi: 10.1023/A:1010841517511. |
[13] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, Performance analysis of optical burst switched networks with limited-range wavelength conversion, retransmission and burst segmentation, Journal of the Operations Research Society of Japan, 52 (2009), 58-74. |
[14] |
Yu. M. Sukhov and N. D. Vvedenskaya, Fast Jackson networks with dynamic routing, Problems of Information Transmission, 38 (2002), 136-153.
doi: 10.1023/A:1020010710507. |
[15] |
T. Yang and J. G. C. Templeton, A survey of retrial queues, Queueing Systems Theory Appl., 2 (1987), 201-233.
doi: 10.1007/BF01158899. |
[1] |
Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2813-2842. doi: 10.3934/jimo.2019082 |
[2] |
Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861 |
[3] |
Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2891-2912. doi: 10.3934/jimo.2019085 |
[4] |
Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 |
[5] |
Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030 |
[6] |
Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3309-3332. doi: 10.3934/jimo.2020120 |
[7] |
Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113 |
[8] |
Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587 |
[9] |
Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Chain recurrence and structure of $ \omega $-limit sets of multivalued semiflows. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2197-2217. doi: 10.3934/cpaa.2020096 |
[10] |
Jeongsim Kim, Bara Kim. Stability of a queue with discriminatory random order service discipline and heterogeneous servers. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1237-1254. doi: 10.3934/jimo.2016070 |
[11] |
Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102 |
[12] |
Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671 |
[13] |
José A. Cañizo, Chuqi Cao, Josephine Evans, Havva Yoldaş. Hypocoercivity of linear kinetic equations via Harris's Theorem. Kinetic and Related Models, 2020, 13 (1) : 97-128. doi: 10.3934/krm.2020004 |
[14] |
José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873 |
[15] |
Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123 |
[16] |
Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487 |
[17] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[18] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[19] |
Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045 |
[20] |
Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]