- Previous Article
- JIMO Home
- This Issue
-
Next Article
Stability of a retrial queueing network with different classes of customers and restricted resource pooling
Frame-bound priority scheduling in discrete-time queueing systems
1. | SMACS Research Group, Ghent University, St.-Pietersnieuwstraat 41, 9000 Gent, Belgium, Belgium, Belgium, Belgium |
References:
[1] |
D. A. Bini, G. Latouche and B. Meini, "Numerical Methods for Structured Markov Chains,", Numerical Mathematics and Scientific Computation, (2005).
|
[2] |
H. Bruneel, Performance of Discrete-Time Queueing Systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[3] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a Multi-Class Discrete-time Queueing System under the Slot-Bound Priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[4] |
S. De Vuyst, S. Wittevrongel and H. Bruneel, A queueing discipline with place reservation,, Proceedings of the COST 279 Eleventh Management Committee Meeting (Ghent, (2004), 23. Google Scholar |
[5] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral Analysis of $M$/$G$/$1$ and $G$/$M$/$1$ Type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[6] |
R. G. Gallager, "Discrete Stochastic Processes,", Kluwer Academic Publishers, (1996). Google Scholar |
[7] |
S. Halfin, Batch Delays Versus Customer Delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,", Wiley, (1975). Google Scholar |
[9] |
V. Klimenok, On the modification of Rouche's theorem for queueing theory problems,, Queueing Systems, 38 (2001), 431.
doi: 10.1023/A:1010999928701. |
[10] |
K. Y. Liu, D. W. Petr, V. S. Frost, H. B. Zhu, C. Braun and W. L. Edwards, Design and analysis of a bandwidth management framework for ATM-based broadband ISDN,, IEEE Communications Magazine, 35 (1997), 138.
doi: 10.1109/35.592108. |
[11] |
M. F. Neuts, "Structured Stochastic Matrices of $M$/$G$/$1$ Type and Their Applications,", Probability: Pure and Applied, 5 (1989).
|
[12] |
I. Stavrakakis, Delay bounds on a queueing system with consistent priorities,, IEEE Transactions on Communications, 42 (1994), 615.
doi: 10.1109/TCOMM.1994.577089. |
[13] |
H. Takada and K. Kobayashi, Loss Systems with Multi-Thresholds on Network Calculus,, Proc. of Queueing Symposium, (2007), 241. Google Scholar |
[14] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research, 40 (2000), 91.
|
[15] |
H. S. Wilf, "Generatingfunctionology,", 2nd edition, (1994).
|
show all references
References:
[1] |
D. A. Bini, G. Latouche and B. Meini, "Numerical Methods for Structured Markov Chains,", Numerical Mathematics and Scientific Computation, (2005).
|
[2] |
H. Bruneel, Performance of Discrete-Time Queueing Systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[3] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a Multi-Class Discrete-time Queueing System under the Slot-Bound Priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[4] |
S. De Vuyst, S. Wittevrongel and H. Bruneel, A queueing discipline with place reservation,, Proceedings of the COST 279 Eleventh Management Committee Meeting (Ghent, (2004), 23. Google Scholar |
[5] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral Analysis of $M$/$G$/$1$ and $G$/$M$/$1$ Type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[6] |
R. G. Gallager, "Discrete Stochastic Processes,", Kluwer Academic Publishers, (1996). Google Scholar |
[7] |
S. Halfin, Batch Delays Versus Customer Delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,", Wiley, (1975). Google Scholar |
[9] |
V. Klimenok, On the modification of Rouche's theorem for queueing theory problems,, Queueing Systems, 38 (2001), 431.
doi: 10.1023/A:1010999928701. |
[10] |
K. Y. Liu, D. W. Petr, V. S. Frost, H. B. Zhu, C. Braun and W. L. Edwards, Design and analysis of a bandwidth management framework for ATM-based broadband ISDN,, IEEE Communications Magazine, 35 (1997), 138.
doi: 10.1109/35.592108. |
[11] |
M. F. Neuts, "Structured Stochastic Matrices of $M$/$G$/$1$ Type and Their Applications,", Probability: Pure and Applied, 5 (1989).
|
[12] |
I. Stavrakakis, Delay bounds on a queueing system with consistent priorities,, IEEE Transactions on Communications, 42 (1994), 615.
doi: 10.1109/TCOMM.1994.577089. |
[13] |
H. Takada and K. Kobayashi, Loss Systems with Multi-Thresholds on Network Calculus,, Proc. of Queueing Symposium, (2007), 241. Google Scholar |
[14] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research, 40 (2000), 91.
|
[15] |
H. S. Wilf, "Generatingfunctionology,", 2nd edition, (1994).
|
[1] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[2] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[3] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[4] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[5] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[6] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[7] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[8] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[9] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[10] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[11] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[12] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[13] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[14] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[15] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[16] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[17] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[18] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[19] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[20] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]