October  2011, 7(4): 789-809. doi: 10.3934/jimo.2011.7.789

Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions

1. 

Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French)

Received  October 2010 Revised  May 2011 Published  August 2011

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated with a multi-objective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting , i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst various applications, our problem may be considered as a response for a decision maker when he has to choose a solution over the solution set of the grand coalition $p$-player cooperative differential game.
Citation: Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).  doi: 10.1007/978-3-0348-8081-7_9.  Google Scholar

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.  doi: 10.1016/0167-6377(96)00022-3.  Google Scholar

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).   Google Scholar

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.   Google Scholar

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.  doi: 10.1007/BF00940077.  Google Scholar

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.   Google Scholar

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.  doi: 10.1007/BF01582141.  Google Scholar

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.  doi: 10.1007/BF00939883.  Google Scholar

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.   Google Scholar

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.  doi: 10.1007/s10957-010-9709-y.  Google Scholar

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.   Google Scholar

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.   Google Scholar

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.   Google Scholar

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.  doi: 10.1007/BF01279451.  Google Scholar

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-79159-1.  Google Scholar

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.  doi: 10.1137/080726227.  Google Scholar

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.   Google Scholar

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.   Google Scholar

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.  doi: 10.1007/s10957-007-9219-8.  Google Scholar

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).   Google Scholar

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.  doi: 10.1016/S0895-7177(97)00239-2.  Google Scholar

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.  doi: 10.1007/BF01584543.  Google Scholar

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.  doi: 10.1093/imamci/15.3.303.  Google Scholar

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.  doi: 10.1023/A:1013875600711.  Google Scholar

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).  doi: 10.1007/978-3-0348-8081-7_9.  Google Scholar

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.  doi: 10.1016/0167-6377(96)00022-3.  Google Scholar

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).   Google Scholar

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.   Google Scholar

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.  doi: 10.1007/BF00940077.  Google Scholar

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.   Google Scholar

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.  doi: 10.1007/BF01582141.  Google Scholar

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.  doi: 10.1007/BF00939883.  Google Scholar

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.   Google Scholar

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.  doi: 10.1007/s10957-010-9709-y.  Google Scholar

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.   Google Scholar

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.   Google Scholar

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.   Google Scholar

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.  doi: 10.1007/BF01279451.  Google Scholar

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-79159-1.  Google Scholar

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.  doi: 10.1137/080726227.  Google Scholar

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.   Google Scholar

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.   Google Scholar

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.  doi: 10.1007/s10957-007-9219-8.  Google Scholar

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).   Google Scholar

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.  doi: 10.1016/S0895-7177(97)00239-2.  Google Scholar

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.  doi: 10.1007/BF01584543.  Google Scholar

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.  doi: 10.1093/imamci/15.3.303.  Google Scholar

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.  doi: 10.1023/A:1013875600711.  Google Scholar

[1]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[2]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[3]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[6]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[7]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[8]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[9]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291

[10]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[14]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[15]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[18]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[19]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[20]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]