-
Previous Article
Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs
- JIMO Home
- This Issue
- Next Article
Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions
1. | Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French) |
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).
doi: 10.1007/978-3-0348-8081-7_9. |
[2] |
L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.
doi: 10.1016/0167-6377(96)00022-3. |
[3] |
J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).
|
[4] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.
|
[5] |
H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.
doi: 10.1016/0022-247X(84)90269-5. |
[6] |
H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.
doi: 10.1007/BF00940077. |
[7] |
S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.
|
[8] |
S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.
doi: 10.1007/BF01582141. |
[9] |
S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.
doi: 10.1007/BF00939883. |
[10] |
S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.
|
[11] |
H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.
doi: 10.1007/s10957-010-9709-y. |
[12] |
H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.
doi: 10.1007/s10957-006-9150-4. |
[13] |
H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.
|
[14] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[15] |
B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93. Google Scholar |
[16] |
J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.
|
[17] |
J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.
doi: 10.1007/BF01279451. |
[18] |
G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-79159-1. |
[19] |
J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.
doi: 10.1137/080726227. |
[20] |
J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.
|
[21] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).
|
[22] |
R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239. Google Scholar |
[23] |
R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.
doi: 10.1007/s10957-007-9219-8. |
[24] |
J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).
|
[25] |
J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).
|
[26] |
Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.
doi: 10.1016/S0895-7177(97)00239-2. |
[27] |
D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).
|
[28] |
K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).
doi: 10.1007/978-1-4615-5563-6. |
[29] |
J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.
doi: 10.1007/BF01584543. |
[30] |
T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).
|
[31] |
K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.
doi: 10.1093/imamci/15.3.303. |
[32] |
Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.
doi: 10.1023/A:1013875600711. |
show all references
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).
doi: 10.1007/978-3-0348-8081-7_9. |
[2] |
L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.
doi: 10.1016/0167-6377(96)00022-3. |
[3] |
J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).
|
[4] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.
|
[5] |
H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.
doi: 10.1016/0022-247X(84)90269-5. |
[6] |
H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.
doi: 10.1007/BF00940077. |
[7] |
S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.
|
[8] |
S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.
doi: 10.1007/BF01582141. |
[9] |
S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.
doi: 10.1007/BF00939883. |
[10] |
S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.
|
[11] |
H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.
doi: 10.1007/s10957-010-9709-y. |
[12] |
H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.
doi: 10.1007/s10957-006-9150-4. |
[13] |
H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.
|
[14] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[15] |
B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93. Google Scholar |
[16] |
J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.
|
[17] |
J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.
doi: 10.1007/BF01279451. |
[18] |
G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-79159-1. |
[19] |
J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.
doi: 10.1137/080726227. |
[20] |
J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.
|
[21] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).
|
[22] |
R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239. Google Scholar |
[23] |
R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.
doi: 10.1007/s10957-007-9219-8. |
[24] |
J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).
|
[25] |
J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).
|
[26] |
Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.
doi: 10.1016/S0895-7177(97)00239-2. |
[27] |
D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).
|
[28] |
K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).
doi: 10.1007/978-1-4615-5563-6. |
[29] |
J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.
doi: 10.1007/BF01584543. |
[30] |
T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).
|
[31] |
K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.
doi: 10.1093/imamci/15.3.303. |
[32] |
Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.
doi: 10.1023/A:1013875600711. |
[1] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[2] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[3] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[4] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[5] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[6] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020127 |
[7] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[8] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[9] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[10] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[11] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[12] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[13] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[14] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[15] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[16] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[17] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[18] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[19] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[20] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]