-
Previous Article
Cluster synchronization for linearly coupled complex networks
- JIMO Home
- This Issue
-
Next Article
Global optimality conditions for some classes of polynomial integer programming problems
State estimation for discrete linear systems with observation time-delayed noise
1. | School of Control Science and Engineering, Shandong University, Jinan 250000, China |
2. | Department of Information Science and Technology, Taishan University, Taian 271021, China |
3. | School of Mathematics, Shandong University, Jinan 250000, China |
References:
[1] |
B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979). Google Scholar |
[2] |
M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.
doi: 10.1109/TAC.2005.846599. |
[3] |
A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.
doi: 10.2478/v10006-009-0004-8. |
[4] |
Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.
doi: 10.1109/ICASSP.1989.267012. |
[5] |
T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999). Google Scholar |
[6] |
R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35. Google Scholar |
[7] |
R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.
|
[8] |
H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.
doi: 10.1109/TAC.1967.1098541. |
[9] |
X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.
doi: 10.1016/j.automatica.2005.03.018. |
[10] |
D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008). Google Scholar |
[11] |
G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.
doi: 10.1109/TAC.1983.1103318. |
[12] |
C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.
doi: 10.1109/59.962439. |
[13] |
A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.
doi: 10.1109/TAC.2003.821422. |
[14] |
S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.
doi: 10.1016/j.sigpro.2009.02.002. |
[15] |
Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.
doi: 10.1109/TCSII.2004.829572. |
[16] |
E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.
doi: 10.1016/S0893-9659(98)00051-2. |
[17] |
H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.
doi: 10.1109/TAC.2006.874983. |
[18] |
H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378. Google Scholar |
show all references
References:
[1] |
B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979). Google Scholar |
[2] |
M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.
doi: 10.1109/TAC.2005.846599. |
[3] |
A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.
doi: 10.2478/v10006-009-0004-8. |
[4] |
Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.
doi: 10.1109/ICASSP.1989.267012. |
[5] |
T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999). Google Scholar |
[6] |
R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35. Google Scholar |
[7] |
R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.
|
[8] |
H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.
doi: 10.1109/TAC.1967.1098541. |
[9] |
X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.
doi: 10.1016/j.automatica.2005.03.018. |
[10] |
D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008). Google Scholar |
[11] |
G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.
doi: 10.1109/TAC.1983.1103318. |
[12] |
C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.
doi: 10.1109/59.962439. |
[13] |
A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.
doi: 10.1109/TAC.2003.821422. |
[14] |
S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.
doi: 10.1016/j.sigpro.2009.02.002. |
[15] |
Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.
doi: 10.1109/TCSII.2004.829572. |
[16] |
E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.
doi: 10.1016/S0893-9659(98)00051-2. |
[17] |
H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.
doi: 10.1109/TAC.2006.874983. |
[18] |
H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378. Google Scholar |
[1] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[2] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[3] |
Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017 |
[4] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[5] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[6] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[7] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[8] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[9] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[10] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[11] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[12] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[13] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[14] |
Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302 |
[15] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[16] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[17] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[18] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[19] |
Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024 |
[20] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]