January  2011, 7(1): 79-85. doi: 10.3934/jimo.2011.7.79

State estimation for discrete linear systems with observation time-delayed noise

1. 

School of Control Science and Engineering, Shandong University, Jinan 250000, China

2. 

Department of Information Science and Technology, Taishan University, Taian 271021, China

3. 

School of Mathematics, Shandong University, Jinan 250000, China

Received  July 2010 Revised  September 2010 Published  January 2011

State estimation problem is discussed for discrete-time systems with delays in measurement noise sequence, which is usually seen in network control and geophysical prospecting systems. An optimal recursive filter is derived via state augmentation. Dimensions of the optimal filter just are the sum of dimensions of state and observation vector. Therefore, they are not related to the size of delay. Besides, a sub-optimal recursive filter with same dimension as the original state is designed. The sub-optimal filter realizes instant optimization at current time. One example shows the effectiveness of the proposed approach.
Citation: Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79
References:
[1]

B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979).   Google Scholar

[2]

M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.  doi: 10.1109/TAC.2005.846599.  Google Scholar

[3]

A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.  doi: 10.2478/v10006-009-0004-8.  Google Scholar

[4]

Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.  doi: 10.1109/ICASSP.1989.267012.  Google Scholar

[5]

T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999).   Google Scholar

[6]

R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35.   Google Scholar

[7]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.   Google Scholar

[8]

H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.  doi: 10.1109/TAC.1967.1098541.  Google Scholar

[9]

X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.  doi: 10.1016/j.automatica.2005.03.018.  Google Scholar

[10]

D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008).   Google Scholar

[11]

G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.  doi: 10.1109/TAC.1983.1103318.  Google Scholar

[12]

C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.  doi: 10.1109/59.962439.  Google Scholar

[13]

A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.  doi: 10.1109/TAC.2003.821422.  Google Scholar

[14]

S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.  doi: 10.1016/j.sigpro.2009.02.002.  Google Scholar

[15]

Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.  doi: 10.1109/TCSII.2004.829572.  Google Scholar

[16]

E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.  doi: 10.1016/S0893-9659(98)00051-2.  Google Scholar

[17]

H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.  doi: 10.1109/TAC.2006.874983.  Google Scholar

[18]

H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378.   Google Scholar

show all references

References:
[1]

B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979).   Google Scholar

[2]

M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.  doi: 10.1109/TAC.2005.846599.  Google Scholar

[3]

A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.  doi: 10.2478/v10006-009-0004-8.  Google Scholar

[4]

Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.  doi: 10.1109/ICASSP.1989.267012.  Google Scholar

[5]

T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999).   Google Scholar

[6]

R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35.   Google Scholar

[7]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.   Google Scholar

[8]

H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.  doi: 10.1109/TAC.1967.1098541.  Google Scholar

[9]

X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.  doi: 10.1016/j.automatica.2005.03.018.  Google Scholar

[10]

D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008).   Google Scholar

[11]

G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.  doi: 10.1109/TAC.1983.1103318.  Google Scholar

[12]

C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.  doi: 10.1109/59.962439.  Google Scholar

[13]

A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.  doi: 10.1109/TAC.2003.821422.  Google Scholar

[14]

S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.  doi: 10.1016/j.sigpro.2009.02.002.  Google Scholar

[15]

Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.  doi: 10.1109/TCSII.2004.829572.  Google Scholar

[16]

E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.  doi: 10.1016/S0893-9659(98)00051-2.  Google Scholar

[17]

H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.  doi: 10.1109/TAC.2006.874983.  Google Scholar

[18]

H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378.   Google Scholar

[1]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[3]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[6]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[10]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[11]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[12]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[15]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[16]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[17]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[19]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[20]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]