-
Previous Article
Single-machine scheduling with stepwise tardiness costs and release times
- JIMO Home
- This Issue
-
Next Article
Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions
Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs
1. | Mathematics Department, Damietta Faculty of Science, New Damietta, Egypt |
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", New York, (1970). Google Scholar |
[2] |
C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research., 11 (1963), 88.
doi: 10.1287/opre.11.1.88. |
[3] |
C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928.
doi: 10.1287/opre.11.6.928. |
[4] |
I. Atencia and P. Moreno, The discrete time $Geo$/$Geo$/$1$ queue with negative customers and disasters,, Computers and Operations Research, 9 (2004), 1537.
doi: 10.1016/S0305-0548(03)00107-2. |
[5] |
X. Chao, A queueing network model with catastrophes and product form solution,, Operations Research Letters., 18 (1995), 75.
doi: 10.1016/0167-6377(95)00029-0. |
[6] |
E. Gelenbe, Production-form queueing networks with negative and positive customers,, Journal of Applied Probability, 28 (1991), 656.
doi: 10.2307/3214499. |
[7] |
F. A. Haight, Queueing with balking,, Biometrika., 44 (1957), 360.
|
[8] |
F. A. Haight, Queueing with balking,, Biometrika., 47 (1960), 285.
|
[9] |
B. Krishna Kumar and D. Arivudainambi, Transient solution of an $M$/$M$/$1$ queue with catastrophes,, Computers and Mathematics with Applications, 40 (2000), 1233.
doi: 10.1016/S0898-1221(00)00234-0. |
[10] |
B. Krishna Kumar and S. Pavai Madheswari, Transient analysis of an $M$/$M$/$1$ queue subject to catastrophes and server failures,, Stochastic Analysis and Applications, 23 (2005), 329.
doi: 10.1081/SAP-200050101. |
[11] |
B. Krishna Kumar, A. Krishnamoorthy, S. Pavai Madheswari and S. Sadiq Basha, Transient analysis of a single server queue with catastrophes, failures and repairs,, Queueing Systems., 56 (2007), 133.
doi: 10.1007/s11134-007-9014-0. |
[12] |
B. Krishna Kumar, P. R. Parthasarathy and M. Sharafali, Transient solution of an $M$/$M$/$1$ queue with balking,, Queueing Systems Theory Appl., 13 (1993), 441.
doi: 10.1007/BF01149265. |
[13] |
A. Montazer-Haghighi, J. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging,, Comput. Oper. Res., 13 (1986), 421.
doi: 10.1016/0305-0548(86)90029-8. |
[14] |
P. R. Parthasarathy and M. Sharafali, Transient solution to the many-server Poisson queue: A simple approach,, Journal of Applied Probability, 26 (1986), 584.
doi: 10.2307/3214415. |
[15] |
S. N. Raju and U. N. Bhat, A computationally oriented analysis of the $G$/$M$/$1$ queue,, Opsearch, 19 (1982), 67.
|
[16] |
L. Takács, "The Transient Behaviour of a Single Server Queueing Process with a Poisson Input,", Proc. 4th Berkeley Symp. On Mathematical Statistics and Probability, (1961), 535.
|
[17] |
A. M. K. Tarabia, Transient analysis of a non-empty $M$/$M$/$1$/$N$ queue-an alternative approach,, Opsearch, 38 (2001), 431.
|
[18] |
A. M. K. Tarabia, A new formula for the transient behaviour of a non-empty $M$/$M$/$1$/$infty$ queue,, Applied Mathematics and Computation, 132 (2002), 1.
doi: 10.1016/S0096-3003(01)00145-X. |
[19] |
K.-H. Wang and Y.-C Chang, Cost analysis of a finite $M$/$M$/$R$ queueing system with balking, reneging, and server breakdowns,, Mathematical Methods of Operations Research, 56 (2002), 169.
doi: 10.1007/s001860200206. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", New York, (1970). Google Scholar |
[2] |
C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research., 11 (1963), 88.
doi: 10.1287/opre.11.1.88. |
[3] |
C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928.
doi: 10.1287/opre.11.6.928. |
[4] |
I. Atencia and P. Moreno, The discrete time $Geo$/$Geo$/$1$ queue with negative customers and disasters,, Computers and Operations Research, 9 (2004), 1537.
doi: 10.1016/S0305-0548(03)00107-2. |
[5] |
X. Chao, A queueing network model with catastrophes and product form solution,, Operations Research Letters., 18 (1995), 75.
doi: 10.1016/0167-6377(95)00029-0. |
[6] |
E. Gelenbe, Production-form queueing networks with negative and positive customers,, Journal of Applied Probability, 28 (1991), 656.
doi: 10.2307/3214499. |
[7] |
F. A. Haight, Queueing with balking,, Biometrika., 44 (1957), 360.
|
[8] |
F. A. Haight, Queueing with balking,, Biometrika., 47 (1960), 285.
|
[9] |
B. Krishna Kumar and D. Arivudainambi, Transient solution of an $M$/$M$/$1$ queue with catastrophes,, Computers and Mathematics with Applications, 40 (2000), 1233.
doi: 10.1016/S0898-1221(00)00234-0. |
[10] |
B. Krishna Kumar and S. Pavai Madheswari, Transient analysis of an $M$/$M$/$1$ queue subject to catastrophes and server failures,, Stochastic Analysis and Applications, 23 (2005), 329.
doi: 10.1081/SAP-200050101. |
[11] |
B. Krishna Kumar, A. Krishnamoorthy, S. Pavai Madheswari and S. Sadiq Basha, Transient analysis of a single server queue with catastrophes, failures and repairs,, Queueing Systems., 56 (2007), 133.
doi: 10.1007/s11134-007-9014-0. |
[12] |
B. Krishna Kumar, P. R. Parthasarathy and M. Sharafali, Transient solution of an $M$/$M$/$1$ queue with balking,, Queueing Systems Theory Appl., 13 (1993), 441.
doi: 10.1007/BF01149265. |
[13] |
A. Montazer-Haghighi, J. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging,, Comput. Oper. Res., 13 (1986), 421.
doi: 10.1016/0305-0548(86)90029-8. |
[14] |
P. R. Parthasarathy and M. Sharafali, Transient solution to the many-server Poisson queue: A simple approach,, Journal of Applied Probability, 26 (1986), 584.
doi: 10.2307/3214415. |
[15] |
S. N. Raju and U. N. Bhat, A computationally oriented analysis of the $G$/$M$/$1$ queue,, Opsearch, 19 (1982), 67.
|
[16] |
L. Takács, "The Transient Behaviour of a Single Server Queueing Process with a Poisson Input,", Proc. 4th Berkeley Symp. On Mathematical Statistics and Probability, (1961), 535.
|
[17] |
A. M. K. Tarabia, Transient analysis of a non-empty $M$/$M$/$1$/$N$ queue-an alternative approach,, Opsearch, 38 (2001), 431.
|
[18] |
A. M. K. Tarabia, A new formula for the transient behaviour of a non-empty $M$/$M$/$1$/$infty$ queue,, Applied Mathematics and Computation, 132 (2002), 1.
doi: 10.1016/S0096-3003(01)00145-X. |
[19] |
K.-H. Wang and Y.-C Chang, Cost analysis of a finite $M$/$M$/$R$ queueing system with balking, reneging, and server breakdowns,, Mathematical Methods of Operations Research, 56 (2002), 169.
doi: 10.1007/s001860200206. |
[1] |
Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57 |
[2] |
Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019085 |
[3] |
Naoto Miyoshi. On the stationary LCFS-PR single-server queue: A characterization via stochastic intensity. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 713-725. doi: 10.3934/naco.2011.1.713 |
[4] |
Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435 |
[5] |
Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653 |
[6] |
Tuan Phung-Duc. Single server retrial queues with setup time. Journal of Industrial & Management Optimization, 2017, (3) : 1329-1345. doi: 10.3934/jimo.2016075 |
[7] |
Dequan Yue, Wuyi Yue. A heterogeneous two-server network system with balking and a Bernoulli vacation schedule. Journal of Industrial & Management Optimization, 2010, 6 (3) : 501-516. doi: 10.3934/jimo.2010.6.501 |
[8] |
Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453 |
[9] |
Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025 |
[10] |
Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715 |
[11] |
Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417 |
[12] |
Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851 |
[13] |
Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199 |
[14] |
Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929 |
[15] |
Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113 |
[16] |
A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019083 |
[17] |
Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911 |
[18] |
Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-30. doi: 10.3934/jimo.2019082 |
[19] |
Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1191-1208. doi: 10.3934/jimo.2014.10.1191 |
[20] |
Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]