• Previous Article
    Single-machine scheduling with stepwise tardiness costs and release times
  • JIMO Home
  • This Issue
  • Next Article
    Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions
October  2011, 7(4): 811-823. doi: 10.3934/jimo.2011.7.811

Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs

1. 

Mathematics Department, Damietta Faculty of Science, New Damietta, Egypt

Received  June 2010 Revised  May 2011 Published  August 2011

Recently Krishna Kumar and Pavai [10] have obtained the transient distribution for the queue length of the system an M/M/1 queueing system with catastrophes, server failures using a direct technique. In this paper, we consider Krishna Kumar and Pavai [10] model with balking feature. Based on the generating function technique and a direct approach, transient and steady state analysis of the queue length is carried out Krishna Kumar and Pavai [10] model can be deduced from the new model. Moreover, some other special cases are shown as special cases of our solution.
Citation: Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", New York, (1970). Google Scholar

[2]

C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research., 11 (1963), 88. doi: 10.1287/opre.11.1.88. Google Scholar

[3]

C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928. doi: 10.1287/opre.11.6.928. Google Scholar

[4]

I. Atencia and P. Moreno, The discrete time $Geo$/$Geo$/$1$ queue with negative customers and disasters,, Computers and Operations Research, 9 (2004), 1537. doi: 10.1016/S0305-0548(03)00107-2. Google Scholar

[5]

X. Chao, A queueing network model with catastrophes and product form solution,, Operations Research Letters., 18 (1995), 75. doi: 10.1016/0167-6377(95)00029-0. Google Scholar

[6]

E. Gelenbe, Production-form queueing networks with negative and positive customers,, Journal of Applied Probability, 28 (1991), 656. doi: 10.2307/3214499. Google Scholar

[7]

F. A. Haight, Queueing with balking,, Biometrika., 44 (1957), 360. Google Scholar

[8]

F. A. Haight, Queueing with balking,, Biometrika., 47 (1960), 285. Google Scholar

[9]

B. Krishna Kumar and D. Arivudainambi, Transient solution of an $M$/$M$/$1$ queue with catastrophes,, Computers and Mathematics with Applications, 40 (2000), 1233. doi: 10.1016/S0898-1221(00)00234-0. Google Scholar

[10]

B. Krishna Kumar and S. Pavai Madheswari, Transient analysis of an $M$/$M$/$1$ queue subject to catastrophes and server failures,, Stochastic Analysis and Applications, 23 (2005), 329. doi: 10.1081/SAP-200050101. Google Scholar

[11]

B. Krishna Kumar, A. Krishnamoorthy, S. Pavai Madheswari and S. Sadiq Basha, Transient analysis of a single server queue with catastrophes, failures and repairs,, Queueing Systems., 56 (2007), 133. doi: 10.1007/s11134-007-9014-0. Google Scholar

[12]

B. Krishna Kumar, P. R. Parthasarathy and M. Sharafali, Transient solution of an $M$/$M$/$1$ queue with balking,, Queueing Systems Theory Appl., 13 (1993), 441. doi: 10.1007/BF01149265. Google Scholar

[13]

A. Montazer-Haghighi, J. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging,, Comput. Oper. Res., 13 (1986), 421. doi: 10.1016/0305-0548(86)90029-8. Google Scholar

[14]

P. R. Parthasarathy and M. Sharafali, Transient solution to the many-server Poisson queue: A simple approach,, Journal of Applied Probability, 26 (1986), 584. doi: 10.2307/3214415. Google Scholar

[15]

S. N. Raju and U. N. Bhat, A computationally oriented analysis of the $G$/$M$/$1$ queue,, Opsearch, 19 (1982), 67. Google Scholar

[16]

L. Takács, "The Transient Behaviour of a Single Server Queueing Process with a Poisson Input,", Proc. 4th Berkeley Symp. On Mathematical Statistics and Probability, (1961), 535. Google Scholar

[17]

A. M. K. Tarabia, Transient analysis of a non-empty $M$/$M$/$1$/$N$ queue-an alternative approach,, Opsearch, 38 (2001), 431. Google Scholar

[18]

A. M. K. Tarabia, A new formula for the transient behaviour of a non-empty $M$/$M$/$1$/$infty$ queue,, Applied Mathematics and Computation, 132 (2002), 1. doi: 10.1016/S0096-3003(01)00145-X. Google Scholar

[19]

K.-H. Wang and Y.-C Chang, Cost analysis of a finite $M$/$M$/$R$ queueing system with balking, reneging, and server breakdowns,, Mathematical Methods of Operations Research, 56 (2002), 169. doi: 10.1007/s001860200206. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", New York, (1970). Google Scholar

[2]

C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research., 11 (1963), 88. doi: 10.1287/opre.11.1.88. Google Scholar

[3]

C. J. Jr. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928. doi: 10.1287/opre.11.6.928. Google Scholar

[4]

I. Atencia and P. Moreno, The discrete time $Geo$/$Geo$/$1$ queue with negative customers and disasters,, Computers and Operations Research, 9 (2004), 1537. doi: 10.1016/S0305-0548(03)00107-2. Google Scholar

[5]

X. Chao, A queueing network model with catastrophes and product form solution,, Operations Research Letters., 18 (1995), 75. doi: 10.1016/0167-6377(95)00029-0. Google Scholar

[6]

E. Gelenbe, Production-form queueing networks with negative and positive customers,, Journal of Applied Probability, 28 (1991), 656. doi: 10.2307/3214499. Google Scholar

[7]

F. A. Haight, Queueing with balking,, Biometrika., 44 (1957), 360. Google Scholar

[8]

F. A. Haight, Queueing with balking,, Biometrika., 47 (1960), 285. Google Scholar

[9]

B. Krishna Kumar and D. Arivudainambi, Transient solution of an $M$/$M$/$1$ queue with catastrophes,, Computers and Mathematics with Applications, 40 (2000), 1233. doi: 10.1016/S0898-1221(00)00234-0. Google Scholar

[10]

B. Krishna Kumar and S. Pavai Madheswari, Transient analysis of an $M$/$M$/$1$ queue subject to catastrophes and server failures,, Stochastic Analysis and Applications, 23 (2005), 329. doi: 10.1081/SAP-200050101. Google Scholar

[11]

B. Krishna Kumar, A. Krishnamoorthy, S. Pavai Madheswari and S. Sadiq Basha, Transient analysis of a single server queue with catastrophes, failures and repairs,, Queueing Systems., 56 (2007), 133. doi: 10.1007/s11134-007-9014-0. Google Scholar

[12]

B. Krishna Kumar, P. R. Parthasarathy and M. Sharafali, Transient solution of an $M$/$M$/$1$ queue with balking,, Queueing Systems Theory Appl., 13 (1993), 441. doi: 10.1007/BF01149265. Google Scholar

[13]

A. Montazer-Haghighi, J. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging,, Comput. Oper. Res., 13 (1986), 421. doi: 10.1016/0305-0548(86)90029-8. Google Scholar

[14]

P. R. Parthasarathy and M. Sharafali, Transient solution to the many-server Poisson queue: A simple approach,, Journal of Applied Probability, 26 (1986), 584. doi: 10.2307/3214415. Google Scholar

[15]

S. N. Raju and U. N. Bhat, A computationally oriented analysis of the $G$/$M$/$1$ queue,, Opsearch, 19 (1982), 67. Google Scholar

[16]

L. Takács, "The Transient Behaviour of a Single Server Queueing Process with a Poisson Input,", Proc. 4th Berkeley Symp. On Mathematical Statistics and Probability, (1961), 535. Google Scholar

[17]

A. M. K. Tarabia, Transient analysis of a non-empty $M$/$M$/$1$/$N$ queue-an alternative approach,, Opsearch, 38 (2001), 431. Google Scholar

[18]

A. M. K. Tarabia, A new formula for the transient behaviour of a non-empty $M$/$M$/$1$/$infty$ queue,, Applied Mathematics and Computation, 132 (2002), 1. doi: 10.1016/S0096-3003(01)00145-X. Google Scholar

[19]

K.-H. Wang and Y.-C Chang, Cost analysis of a finite $M$/$M$/$R$ queueing system with balking, reneging, and server breakdowns,, Mathematical Methods of Operations Research, 56 (2002), 169. doi: 10.1007/s001860200206. Google Scholar

[1]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[2]

Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019085

[3]

Naoto Miyoshi. On the stationary LCFS-PR single-server queue: A characterization via stochastic intensity. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 713-725. doi: 10.3934/naco.2011.1.713

[4]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[5]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[6]

Tuan Phung-Duc. Single server retrial queues with setup time. Journal of Industrial & Management Optimization, 2017, (3) : 1329-1345. doi: 10.3934/jimo.2016075

[7]

Dequan Yue, Wuyi Yue. A heterogeneous two-server network system with balking and a Bernoulli vacation schedule. Journal of Industrial & Management Optimization, 2010, 6 (3) : 501-516. doi: 10.3934/jimo.2010.6.501

[8]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[9]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

[10]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[11]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[12]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[13]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[14]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[15]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[16]

A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019083

[17]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[18]

Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-30. doi: 10.3934/jimo.2019082

[19]

Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1191-1208. doi: 10.3934/jimo.2014.10.1191

[20]

Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]