January  2011, 7(1): 87-101. doi: 10.3934/jimo.2011.7.87

Cluster synchronization for linearly coupled complex networks

1. 

The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, Tongji University, Shanghai, 200092, China

2. 

Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

3. 

Center for Computational Systems Biology, Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Received  December 2009 Revised  October 2010 Published  January 2011

In this paper, the cluster synchronization for an array of linearly coupled identical chaotic systems is investigated. New coupling schemes (or coupling matrices) are proposed, by which global cluster synchronization of linearly coupled chaotic systems can be realized. Here, the number and the size of clusters (or groups) can be arbitrary. Some sufficient criteria to ensure global cluster synchronization are derived. Moreover, for any given coupling matrix, new coupled complex networks with adaptive coupling strengths are proposed, which can synchronize coupled chaotic systems by clusters. Numerical simulations are finally given to show the validity of the theoretical results.
Citation: Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87
References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E, 63 (2001), 036216. doi: 10.1103/PhysRevE.63.036216.

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos, 13 (2003), 165-178. doi: 10.1063/1.1514202.

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187. doi: 10.1016/j.physd.2004.03.012.

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication, Phys. Rev. E, 55 (1997), 4979-4981. doi: 10.1103/PhysRevE.55.4979.

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks, Physica D, 75 (1994), 55. doi: 10.1016/0167-2789(94)90274-7.

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics," Academic Press, New York, 1993.

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network, Journal of Industrial and Management Optimization, 4 (2008), 661-672.

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, Solitons and Fractals, 11 (2000), 1387-1396. doi: 10.1016/S0960-0779(99)00051-X.

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays, Chin. Ann. Math. Ser. B, 28 (2007), 737-746. doi: 10.1007/s11401-006-0194-4.

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491-2503.

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213 (2006), 214-230. doi: 10.1016/j.physd.2005.11.009.

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks, Chao, 16 (2006), 023103.

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662. doi: 10.1137/0150098.

[15]

M. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256. doi: 10.1137/S003614450342480.

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16 (2003), 1597-1605. doi: 10.1088/0951-7715/16/5/303.

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D, 197 (2004), 375-391. doi: 10.1016/j.physd.2004.07.011.

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits, Chaos, 6 (1996), 262-279. doi: 10.1063/1.166174.

[20]

S. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. doi: 10.1038/35065725.

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. -I, 49 (2002), 54-62.

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, 12 (2002), 187-192. doi: 10.1142/S0218127402004292.

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world, Nature, 393 (1998), 440-442. doi: 10.1038/30918.

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection, Europhys. Lett., 59 (2002), 814-819. doi: 10.1209/epl/i2002-00115-8.

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18 (2005), 1057-1064. doi: 10.1088/0951-7715/18/3/007.

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst.-I, 42 (1995), 430-447.

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing, Math. Comput. Model., 35 (2002), 145-163. doi: 10.1016/S0895-7177(01)00157-1.

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication, Int. J. Bifur. Chaos, 7 (1997), 645-664. doi: 10.1142/S0218127497000443.

show all references

References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E, 63 (2001), 036216. doi: 10.1103/PhysRevE.63.036216.

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos, 13 (2003), 165-178. doi: 10.1063/1.1514202.

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187. doi: 10.1016/j.physd.2004.03.012.

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication, Phys. Rev. E, 55 (1997), 4979-4981. doi: 10.1103/PhysRevE.55.4979.

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks, Physica D, 75 (1994), 55. doi: 10.1016/0167-2789(94)90274-7.

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics," Academic Press, New York, 1993.

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network, Journal of Industrial and Management Optimization, 4 (2008), 661-672.

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, Solitons and Fractals, 11 (2000), 1387-1396. doi: 10.1016/S0960-0779(99)00051-X.

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays, Chin. Ann. Math. Ser. B, 28 (2007), 737-746. doi: 10.1007/s11401-006-0194-4.

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491-2503.

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213 (2006), 214-230. doi: 10.1016/j.physd.2005.11.009.

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks, Chao, 16 (2006), 023103.

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662. doi: 10.1137/0150098.

[15]

M. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256. doi: 10.1137/S003614450342480.

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16 (2003), 1597-1605. doi: 10.1088/0951-7715/16/5/303.

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D, 197 (2004), 375-391. doi: 10.1016/j.physd.2004.07.011.

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits, Chaos, 6 (1996), 262-279. doi: 10.1063/1.166174.

[20]

S. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. doi: 10.1038/35065725.

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. -I, 49 (2002), 54-62.

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, 12 (2002), 187-192. doi: 10.1142/S0218127402004292.

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world, Nature, 393 (1998), 440-442. doi: 10.1038/30918.

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection, Europhys. Lett., 59 (2002), 814-819. doi: 10.1209/epl/i2002-00115-8.

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18 (2005), 1057-1064. doi: 10.1088/0951-7715/18/3/007.

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst.-I, 42 (1995), 430-447.

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing, Math. Comput. Model., 35 (2002), 145-163. doi: 10.1016/S0895-7177(01)00157-1.

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication, Int. J. Bifur. Chaos, 7 (1997), 645-664. doi: 10.1142/S0218127497000443.

[1]

Yu-Jing Shi, Yan Ma. Finite/fixed-time synchronization for complex networks via quantized adaptive control. Electronic Research Archive, 2021, 29 (2) : 2047-2061. doi: 10.3934/era.2020104

[2]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[3]

Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6465-6480. doi: 10.3934/dcdsb.2022005

[4]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[5]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[6]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1465-1477. doi: 10.3934/dcdss.2020395

[7]

Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041

[8]

Ramasamy Saravanakumar, Yang Cao, Ali Kazemy, Quanxin Zhu. Sampled-data based extended dissipative synchronization of stochastic complex dynamical networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (11) : 3313-3330. doi: 10.3934/dcdss.2022082

[9]

Kun Liang, Wangli He, Yang Yuan, Liyu Shi. Synchronization for singularity-perturbed complex networks via event-triggered impulsive control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (11) : 3205-3221. doi: 10.3934/dcdss.2022068

[10]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[11]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[12]

Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234

[13]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[14]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[15]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[16]

Yannick Holle, Michael Herty, Michael Westdickenberg. New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15 (4) : 605-631. doi: 10.3934/nhm.2020016

[17]

Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1

[18]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic and Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[19]

Junhyeok Byeon, Seung-Yeal Ha, Hansol Park. Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6501-6538. doi: 10.3934/dcdsb.2022007

[20]

Shirin Panahi, Sajad Jafari. New synchronization index of non-identical networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1359-1373. doi: 10.3934/dcdss.2020371

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]