January  2011, 7(1): 87-101. doi: 10.3934/jimo.2011.7.87

Cluster synchronization for linearly coupled complex networks

1. 

The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, Tongji University, Shanghai, 200092, China

2. 

Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

3. 

Center for Computational Systems Biology, Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Received  December 2009 Revised  October 2010 Published  January 2011

In this paper, the cluster synchronization for an array of linearly coupled identical chaotic systems is investigated. New coupling schemes (or coupling matrices) are proposed, by which global cluster synchronization of linearly coupled chaotic systems can be realized. Here, the number and the size of clusters (or groups) can be arbitrary. Some sufficient criteria to ensure global cluster synchronization are derived. Moreover, for any given coupling matrix, new coupled complex networks with adaptive coupling strengths are proposed, which can synchronize coupled chaotic systems by clusters. Numerical simulations are finally given to show the validity of the theoretical results.
Citation: Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87
References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks,, Rev. Modern Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47. Google Scholar

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.036216. Google Scholar

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems,, Chaos, 13 (2003), 165. doi: 10.1063/1.1514202. Google Scholar

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems,, Physica D, 195 (2004), 159. doi: 10.1016/j.physd.2004.03.012. Google Scholar

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication,, Phys. Rev. E, 55 (1997), 4979. doi: 10.1103/PhysRevE.55.4979. Google Scholar

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks,, Physica D, 75 (1994). doi: 10.1016/0167-2789(94)90274-7. Google Scholar

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics,", Academic Press, (1993). Google Scholar

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network,, Journal of Industrial and Management Optimization, 4 (2008), 661. Google Scholar

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications,, Chaos, 11 (2000), 1387. doi: 10.1016/S0960-0779(99)00051-X. Google Scholar

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays,, Chin. Ann. Math. Ser. B, 28 (2007), 737. doi: 10.1007/s11401-006-0194-4. Google Scholar

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays,, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491. Google Scholar

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems,, Physica D, 213 (2006), 214. doi: 10.1016/j.physd.2005.11.009. Google Scholar

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks,, Chao, 16 (2006). Google Scholar

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098. Google Scholar

[15]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480. Google Scholar

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications,, Nonlinearity, 16 (2003), 1597. doi: 10.1088/0951-7715/16/5/303. Google Scholar

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations,, Physica D, 197 (2004), 375. doi: 10.1016/j.physd.2004.07.011. Google Scholar

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits,, Chaos, 6 (1996), 262. doi: 10.1063/1.166174. Google Scholar

[20]

S. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725. Google Scholar

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility,, IEEE Trans. Circuits Syst. -I, 49 (2002), 54. Google Scholar

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks,, Int. J. Bifur. Chaos, 12 (2002), 187. doi: 10.1142/S0218127402004292. Google Scholar

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world,, Nature, 393 (1998), 440. doi: 10.1038/30918. Google Scholar

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection,, Europhys. Lett., 59 (2002), 814. doi: 10.1209/epl/i2002-00115-8. Google Scholar

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity, 18 (2005), 1057. doi: 10.1088/0951-7715/18/3/007. Google Scholar

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems,, IEEE Trans. Circuits Syst.-I, 42 (1995), 430. Google Scholar

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing,, Math. Comput. Model., 35 (2002), 145. doi: 10.1016/S0895-7177(01)00157-1. Google Scholar

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication,, Int. J. Bifur. Chaos, 7 (1997), 645. doi: 10.1142/S0218127497000443. Google Scholar

show all references

References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks,, Rev. Modern Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47. Google Scholar

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.036216. Google Scholar

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems,, Chaos, 13 (2003), 165. doi: 10.1063/1.1514202. Google Scholar

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems,, Physica D, 195 (2004), 159. doi: 10.1016/j.physd.2004.03.012. Google Scholar

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication,, Phys. Rev. E, 55 (1997), 4979. doi: 10.1103/PhysRevE.55.4979. Google Scholar

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks,, Physica D, 75 (1994). doi: 10.1016/0167-2789(94)90274-7. Google Scholar

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics,", Academic Press, (1993). Google Scholar

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network,, Journal of Industrial and Management Optimization, 4 (2008), 661. Google Scholar

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications,, Chaos, 11 (2000), 1387. doi: 10.1016/S0960-0779(99)00051-X. Google Scholar

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays,, Chin. Ann. Math. Ser. B, 28 (2007), 737. doi: 10.1007/s11401-006-0194-4. Google Scholar

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays,, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491. Google Scholar

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems,, Physica D, 213 (2006), 214. doi: 10.1016/j.physd.2005.11.009. Google Scholar

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks,, Chao, 16 (2006). Google Scholar

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098. Google Scholar

[15]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480. Google Scholar

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications,, Nonlinearity, 16 (2003), 1597. doi: 10.1088/0951-7715/16/5/303. Google Scholar

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations,, Physica D, 197 (2004), 375. doi: 10.1016/j.physd.2004.07.011. Google Scholar

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits,, Chaos, 6 (1996), 262. doi: 10.1063/1.166174. Google Scholar

[20]

S. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725. Google Scholar

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility,, IEEE Trans. Circuits Syst. -I, 49 (2002), 54. Google Scholar

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks,, Int. J. Bifur. Chaos, 12 (2002), 187. doi: 10.1142/S0218127402004292. Google Scholar

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world,, Nature, 393 (1998), 440. doi: 10.1038/30918. Google Scholar

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection,, Europhys. Lett., 59 (2002), 814. doi: 10.1209/epl/i2002-00115-8. Google Scholar

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity, 18 (2005), 1057. doi: 10.1088/0951-7715/18/3/007. Google Scholar

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems,, IEEE Trans. Circuits Syst.-I, 42 (1995), 430. Google Scholar

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing,, Math. Comput. Model., 35 (2002), 145. doi: 10.1016/S0895-7177(01)00157-1. Google Scholar

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication,, Int. J. Bifur. Chaos, 7 (1997), 645. doi: 10.1142/S0218127497000443. Google Scholar

[1]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[2]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[3]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[4]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[5]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[6]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[7]

Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234

[8]

Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1

[9]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[10]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[11]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[12]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[13]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[14]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[15]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[16]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[17]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[18]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[19]

Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks & Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473

[20]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]