• Previous Article
    A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization
  • JIMO Home
  • This Issue
  • Next Article
    Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums
October  2011, 7(4): 875-890. doi: 10.3934/jimo.2011.7.875

Optimal fleet composition via dynamic programming and golden section search

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia, Australia

Received  September 2010 Revised  May 2011 Published  August 2011

In this paper, we consider an optimization problem arising in vehicle fleet management. The problem is to construct a heterogeneous vehicle fleet in such a way that cost is minimized subject to a constraint on the overall fleet size. The cost function incorporates fixed and variable costs associated with the fleet, as well as hiring costs that are incurred when vehicle requirements exceed fleet capacity. We first consider the simple case when there is only one type of vehicle. We show that in this case the cost function is convex, and thus the problem can be solved efficiently using the well-known golden section method. We then devise an algorithm, based on dynamic programming and the golden section method, for solving the general problem in which there are multiple vehicle types. We conclude the paper with some simulation results.
Citation: Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875
References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

show all references

References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[3]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[4]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[12]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[13]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[14]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[18]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]