• Previous Article
    A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization
  • JIMO Home
  • This Issue
  • Next Article
    Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums
October  2011, 7(4): 875-890. doi: 10.3934/jimo.2011.7.875

Optimal fleet composition via dynamic programming and golden section search

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia, Australia

Received  September 2010 Revised  May 2011 Published  August 2011

In this paper, we consider an optimization problem arising in vehicle fleet management. The problem is to construct a heterogeneous vehicle fleet in such a way that cost is minimized subject to a constraint on the overall fleet size. The cost function incorporates fixed and variable costs associated with the fleet, as well as hiring costs that are incurred when vehicle requirements exceed fleet capacity. We first consider the simple case when there is only one type of vehicle. We show that in this case the cost function is convex, and thus the problem can be solved efficiently using the well-known golden section method. We then devise an algorithm, based on dynamic programming and the golden section method, for solving the general problem in which there are multiple vehicle types. We conclude the paper with some simulation results.
Citation: Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875
References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

show all references

References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

[1]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[2]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[3]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[4]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

[5]

Tengfei Yanu, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019136

[6]

Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019075

[7]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

[8]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[9]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[10]

Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247

[11]

Su-Hong Jiang, Min Li. A modified strictly contractive peaceman-rachford splitting method for multi-block separable convex programming. Journal of Industrial & Management Optimization, 2018, 14 (1) : 397-412. doi: 10.3934/jimo.2017052

[12]

Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial & Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078

[13]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[14]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[15]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[16]

Alexandr Golodnikov, Stan Uryasev, Grigoriy Zrazhevsky, Yevgeny Macheret, A. Alexandre Trindade. Optimization of composition and processing parameters for alloy development: a statistical model-based approach. Journal of Industrial & Management Optimization, 2007, 3 (3) : 489-501. doi: 10.3934/jimo.2007.3.489

[17]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[18]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[19]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[20]

Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]