-
Previous Article
An integrated approach for selection of service vendors in service supply chain
- JIMO Home
- This Issue
-
Next Article
Optimal fleet composition via dynamic programming and golden section search
A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization
1. | Department of Mathematics, Shanghai University, 99, Shangda Road, 200444, Shanghai |
2. | Department of Mathematics, Shanghai University, Shanghai 200444, China |
References:
[1] |
K. M. Anstreicher, D. den Hertog, C. Roos and T. Terlaky, A long-step barrier method for convex quadratic programming,, Algorithmica, 10 (1993), 365.
doi: 10.1007/BF01769704. |
[2] |
Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel function for primal-dual interior-point algorithms in linear optimization,, SIAM J. Optim., 15 (2004), 101.
doi: 10.1137/S1052623403423114. |
[3] |
S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004). Google Scholar |
[4] |
J. Faraut and A. Korányi, "Analysis on Symmetric Cones,", Oxford Mathematical Monographs, (1994).
|
[5] |
L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Special issue dedicated to William B. Gragg (Monterey, 86 (1997), 149.
doi: 10.1016/S0377-0427(97)00153-2. |
[6] |
L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms,, Math. Z., 239 (2002), 117.
doi: 10.1007/s002090100286. |
[7] |
R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms, II: Convex quadratic programming,, Math. Program., 44 (1989), 43.
|
[8] |
Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming,, Math. Oper. Res., 22 (1997), 1.
doi: 10.1287/moor.22.1.1. |
[9] |
J. Peng, C. Roos and T. Terlaky, "Self-regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms,", Princeton Series in Applied Mathematics, (2002).
|
[10] |
C. Roos, T. Terlaky and J.-Ph. Vial, "Theory and Algorithms for Linear Optimization. An Interior Point Approach,", Wiley-Interscience Series in Discrete Mathematics and Optimization, (1997).
|
[11] |
S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones,, Math. Program, 96 (2003), 409.
|
[12] |
Changjun Yu, Kok Lay Teo, Liangsheng Zhang and Yanqin Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 4 (2010), 895. Google Scholar |
[13] |
M. V. C. Vieira, "Jordan Algebraic Approach to Symmetric Optimization,", Ph.D thesis, (2007). Google Scholar |
show all references
References:
[1] |
K. M. Anstreicher, D. den Hertog, C. Roos and T. Terlaky, A long-step barrier method for convex quadratic programming,, Algorithmica, 10 (1993), 365.
doi: 10.1007/BF01769704. |
[2] |
Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel function for primal-dual interior-point algorithms in linear optimization,, SIAM J. Optim., 15 (2004), 101.
doi: 10.1137/S1052623403423114. |
[3] |
S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004). Google Scholar |
[4] |
J. Faraut and A. Korányi, "Analysis on Symmetric Cones,", Oxford Mathematical Monographs, (1994).
|
[5] |
L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Special issue dedicated to William B. Gragg (Monterey, 86 (1997), 149.
doi: 10.1016/S0377-0427(97)00153-2. |
[6] |
L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms,, Math. Z., 239 (2002), 117.
doi: 10.1007/s002090100286. |
[7] |
R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms, II: Convex quadratic programming,, Math. Program., 44 (1989), 43.
|
[8] |
Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming,, Math. Oper. Res., 22 (1997), 1.
doi: 10.1287/moor.22.1.1. |
[9] |
J. Peng, C. Roos and T. Terlaky, "Self-regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms,", Princeton Series in Applied Mathematics, (2002).
|
[10] |
C. Roos, T. Terlaky and J.-Ph. Vial, "Theory and Algorithms for Linear Optimization. An Interior Point Approach,", Wiley-Interscience Series in Discrete Mathematics and Optimization, (1997).
|
[11] |
S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones,, Math. Program, 96 (2003), 409.
|
[12] |
Changjun Yu, Kok Lay Teo, Liangsheng Zhang and Yanqin Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 4 (2010), 895. Google Scholar |
[13] |
M. V. C. Vieira, "Jordan Algebraic Approach to Symmetric Optimization,", Ph.D thesis, (2007). Google Scholar |
[1] |
Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011 |
[2] |
Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39 |
[3] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
[4] |
Yinghong Xu, Lipu Zhang, Jing Zhang. A full-modified-Newton step infeasible interior-point algorithm for linear optimization. Journal of Industrial & Management Optimization, 2016, 12 (1) : 103-116. doi: 10.3934/jimo.2016.12.103 |
[5] |
Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53 |
[6] |
Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601 |
[7] |
Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469 |
[8] |
M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151. |
[9] |
Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627 |
[10] |
Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037 |
[11] |
Peng Guo, Wenming Cheng, Yi Wang. A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1071-1090. doi: 10.3934/jimo.2014.10.1071 |
[12] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[13] |
Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial & Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086 |
[14] |
Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033 |
[15] |
Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003 |
[16] |
Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013 |
[17] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[18] |
Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193 |
[19] |
Ming-Jong Yao, Yu-Chun Wang. Theoretical analysis and a search procedure for the joint replenishment problem with deteriorating products. Journal of Industrial & Management Optimization, 2005, 1 (3) : 359-375. doi: 10.3934/jimo.2005.1.359 |
[20] |
Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares. Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks & Heterogeneous Media, 2015, 10 (1) : 167-194. doi: 10.3934/nhm.2015.10.167 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]