Citation: |
[1] |
A. B. Andreev and R. D. Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods PDEs, 4 (1988), 15-32. |
[2] |
J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp., 31 (1977), 94-111. |
[3] |
C. M. Chen and Y. Q. Huang, "High Accuracy Theory of Finite Element Methods," Hunan Science and Technology Press, Changsha, 1995. |
[4] |
C. M. Chen and V. Thomée, The lumped mass finite element method for a parabolic problem, J. Austral. Math. Soc. Ser. B, 26 (1985), 329-354.doi: 10.1017/S0334270000004549. |
[5] |
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite element methods, Int. J. Numer. Methods Engineering, 75 (2008), 881-898.doi: 10.1002/nme.2272. |
[6] |
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269-1291.doi: 10.1090/S0025-5718-08-02104-2. |
[7] |
Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comp., 39 (2009), 206-221.doi: 10.1007/s10915-008-9258-9. |
[8] |
Y. Chen and W. B. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model., 3 (2006), 311-321. |
[9] |
Y. Chen, N. Y. Yi and W. B. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275.doi: 10.1137/070679703. |
[10] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[11] |
J. Jr. Douglas and T. Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf., Univ. Coll., Dublin, 1972), Academic Press, London, (1973), 89-92. |
[12] |
J. Jr. Douglas, T. Dupont and M. F. Wheeler, An $L$$infty$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Sér Rouge, 8 (1974), 61-66. |
[13] |
Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales, Journal of Industrial and Management Optimization (JIMO), 5 (2009), 1-10. |
[14] |
Paul B. Hermanns and Nguyen Van Thoai, Global optimization algorithm for solving bilevel programming problems with quadratic lower levels, Journal of Industrial and Management Optimization (JIMO), 6 (2010), 177-196. |
[15] |
G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414-427.doi: 10.1137/0320032. |
[16] |
D. Kwak, S. Lee and Q. Li, Superconvergence of finite element method for parabolic problem, Internal. J. Math. Sci., 23 (2000), 567-578.doi: 10.1155/S0161171200002519. |
[17] |
Y. Kwon and F. A. Milner, $L^\infty$-error estimates for mixed methods for semilinear second-order elliptic equations, SIAM J. Numer. Anal., 25 (1988), 46-53.doi: 10.1137/0725005. |
[18] |
R. Li and W. B. Liu, Available from: http://dsec.pku.edu.cn/~yuhj/computing/AFEPack/AFEPackIndex.html. |
[19] |
R. Li, H. Ma, W. B. Liu and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349.doi: 10.1137/S0363012901389342. |
[20] |
J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Translated from the French by S. K. Mitter, Die Grundlehren der Mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. |
[21] |
J. L. Lions and E. Magenes, "Non Homogeneous Boundary Value Problems and Applications," Springer-Verlag, Berlin, 1972. |
[22] |
Chongyang Liu, Zhaohua Gong and Enmin Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization (JIMO), 5 (2009), 835-850.doi: 10.3934/jimo.2009.5.835. |
[23] |
W. B. Liu and N. Yan, A Posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497-521.doi: 10.1007/s002110100380. |
[24] |
Z. Lu and Y. Chen, A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech., 1 (2009), 242-256. |
[25] |
Z. Lu and Y. Chen, $L$$infty$-error estimates of triangular mixed finite element methods for optimal control problem govern by semilinear elliptic equation, Numer. Anal. Appl., 12 (2009), 74-86. |
[26] |
M. F. Wheeler, A priori $L^2$ error estimates for Galerkin approximation to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723-759.doi: 10.1137/0710062. |
[27] |
R. S. Mcknight and W. E. Borsarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control, 11 (1973), 510-524.doi: 10.1137/0311040. |
[28] |
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970-985.doi: 10.1137/S0363012903431608. |
[29] |
P. Neittaanmäki and D. Tiba, "Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms, and Applications," Monographs and Textbooks in Pure and Applied Mathematics, 179, Marcel Dekker, Inc., New York, 1994. |
[30] |
Y. Y. Nie and V. Thomée, A lumped mass finite element method with quadrature for a nonlinear parabolic problem, IMA J. Numer. Anal., 5 (1985), 371-396.doi: 10.1093/imanum/5.4.371. |
[31] |
L. A. Oganesjan and L. A. Ruhovec, An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž.Vyčisl. Mat. i Mat. Fiz, 9 (1969), 1102-1120. |
[32] |
A. H. Schatz, I. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), 505-521.doi: 10.1137/0733027. |
[33] |
V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," 2nd edition, Springer Series in Compu. Math., 25, Springer-Verlag, Berlin, 2006. |
[34] |
V. Thomée, J. C. Xu and N. Y. Zhang, Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem, SIAM J. Numer. Anal., 26 (1989), 553-573.doi: 10.1137/0726033. |
[35] |
F. Tröltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems-strong convergence of optimal control, Appl. Math. Optim., 29 (1994), 309-329.doi: 10.1007/BF01189480. |
[36] |
L. Wahlbin, "Superconvergence in Gelerkin Finite Element Methods," Lecture Notes in Math., 1605, Springer-Verlag, Berlin, 1995. |
[37] |
Changzhi Wu, Kok Lay Teo and Volker Rehbock, Optimal control of piecewise affine systems with piecewise affine state feedback, Journal of Industrial and Management Optimization (JIMO), 5 (2009), 737-747. |
[38] |
X. Xing and Y. Chen, Error estimates of mixed methods for optimal control problems governed by parabolic equations, Int. J. Numer. Methods Engineering, 75 (2008), 735-754.doi: 10.1002/nme.2289. |
[39] |
N. Yan, Superconvergence and recovery type a posteriori error estimate for constrained convex optimal control problems, in "Adv. Sci. Comput. Appl." (eds. Y. Lu, W. Sun and T. Tang), Science Press, (2004), 408-419. |
[40] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang and Yanqin Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization (JIMO), 6 (2010), 895-910.doi: 10.3934/jimo.2010.6.895. |
[41] |
C. D. Zhu and Q. Lin, "Youxianyuan Chaoshoulian Lilun," (Chinese) [The Hyperconvergence Theory of Finite Elements], Hunan Science and Technology Publishing House, Changsha, 1989. |