Citation: |
[1] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[2] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance, Nonlinear Anal., 66 (2007), 1329-1340.doi: 10.1016/j.na.2006.01.019. |
[3] |
L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[4] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal., 61 (2005), 61-75.doi: 10.1016/j.na.2004.11.012. |
[5] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities, J. Global Optim., 34 (2006), 317-337.doi: 10.1007/s10898-005-4388-1. |
[6] |
L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[7] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671-684. |
[8] |
G. Idone and A. Maugeri, Variational inequalities and a transport planning for an elastic and continuum model, J. Ind. Manag. Optim., 1 (2005), 81-86. |
[9] |
N. S. Papageorgiou, S. R. Andrade Santos and V. Staicu, Eigenvalue problems for hemivariational inequalities, Set-Valued Anal., 16 (2008), 1061-1087.doi: 10.1007/s11228-008-0100-1. |
[10] |
C.-L. Tang and Q.-J. Gao, Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term, J. Diff. Equat., 146 (1998), 56-66.doi: 10.1006/jdeq.1998.3411. |
[11] |
C.-L. Tang, Multiple solutions of Neumann problem for elliptic equations, Nonlinear Anal., 54 (2003), 637-650.doi: 10.1016/S0362-546X(03)00091-9. |
[12] |
L. Wang, Y. Li and L. W. Zhang, A differential equation method for solving box constrained variational inequality problems, J. Ind. Manag. Optim., 7 (2011), 183-198. |