Citation: |
[1] |
G. Albeanu, A monte carlo approach for control search, Mathematics and Computers in Simulation, 43 (1997), 223-228.doi: 10.1016/S0378-4754(96)00069-9. |
[2] |
H. A. Abbass, A. M. Bagirov and J. Zhang, The discrete gradient evolutionary strategy method for global optimization, in "Proceedings of IEEE Congress on Evolutionary Computation," 1 (2003), 435-442. |
[3] |
D. D. Burgess, Rotation in simplex optimization, Analytica Chimica Acta, 181 (1986), 97-106.doi: 10.1016/S0003-2670(00)85224-1. |
[4] |
F. V. Berth and A. P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, 176 (2006), 937-971.doi: 10.1016/j.ins.2005.02.003. |
[5] |
P. Collet and J. P. Rennard, "Stochastic Optimization Algorithms," Handbook of Research on Nature Inspired Computing for Economics and Management, 2006. |
[6] |
K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems, 9 (1995), 115-148. |
[7] |
R. C. Eberhart and Y. H. Shi, Comparison between genetic algorithms and particle swarm optimization, in "Annual Conference on Evolutionary Programming," San Diego, (1998), 611-616. |
[8] |
D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Reading: Addison-Wesley, 1989. |
[9] |
C. Hamzacebi and F. Kutay, A heuristic approach for finding the global minimum: Adaptive random search technique, Applied Mathematics and Computation, 173 (2006), 1323-1333.doi: 10.1016/j.amc.2005.05.002. |
[10] |
C. Hamzacebi and F. Kutay, Continous functions minimization by dynamic random search technique, Applied Mathematical Modeling, 31 (2007), 2189-2198.doi: 10.1016/j.apm.2006.08.015. |
[11] |
R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, Journal of the Association for Computing Machinery(ACM), 8 (1961), 212-229. |
[12] |
J. Kennedy and R. C. Eberhart, Particle swarm optimization, in "Proceedings of IEEE International Conference on Neural Networks," IEEE Service Center, Piscataway, NJ, (1995), 1942-1948. |
[13] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. OPTIM., 9 (1998), 112-147. |
[14] |
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transaction on Evolutionary Computation, 10 (2006), 281-295. |
[15] |
J. Y. Li and R. R. Rhinehart, Heuristic random optimization, Computers and Chemical Engineering, 22 (1998), 427-444. |
[16] |
T. W. Leung, C. K. Chan and M. D. Troutt, A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics, Journal of Industrial and Management Optimization, 4 (2008), 53-66. |
[17] |
J. Matyas, Random optimization, Automation and Remote Control, 26 (1965), 246-253. |
[18] |
Z. Michalewicz, A modified genetic algorithm for optimal control problems, Computers Math. Applic, 23 (1992), 83-94.doi: 10.1016/0898-1221(92)90094-X. |
[19] |
J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7 (1965), 308-313. |
[20] |
A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, 13 (2009), 398-417. |
[21] |
G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Transactions on Neural Networks, 5 (1994), 96-101. |
[22] |
D. W. Stroock, "An Introduction to Markov Processes," Beijing: World Publishing Corporation, 2009. |
[23] |
F. J. Solis and R. J. B. Wets, Minimization by random search techniques, Mathematics of Operations Research, 6 (1981), 19-30. |
[24] |
R. Storn and K. V. Price, Differential evolutionary-A simple and efficient heuristic for global optimization over continous spaces, Journal of Global Optimization, 11 (1997), 341-359.doi: 10.1023/A:1008202821328. |
[25] |
Y. H. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, in "Proceedings of the IEEE Congress on Evolutionary Computation," IEEE Press, Seoul, Korea, (2001), 1945-1950. |
[26] |
T. D. Tran and G. G. Jin, Real-coded genetic algorithm benchmarked on noiseless black-box optimization testbed, in "Workshop Proceedings of the Genetic and Evolutionary Computation Conference," (2010), 1731-1738. |
[27] |
A. H. Wright, Genetic algorithms for real parameter optimization, in "Foundations of Genetic Algorithms" (Ed. G. J. E. Rawlins), (1991), 205-220. |
[28] |
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1 (1997), 67-82. |
[29] |
K. F. C. Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization, Journal of Global Optimization, 28 (2004), 229-238.doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[30] |
X. S. Yang, "Engineering Optimization: An Introduction with Metaheuristic Applications," Wiley, 2010. |
[31] |
Y. X. Yuan, "Nonlinear Optimization Calculation Method," Beijing: Science press, 2008. |
[32] |
T. Zhang, Y. J. Zhang, Q. P. Zheng and P. M. Pardalos, A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories on the make-to-stock and make-to-order management architecture, Journal of Industrial and Management Optimization, 7 (2011), 31-51. |
[33] |
X. J. Zhou, C. H. Yang and W. H. Gui, Initial version of state transition algorithm, in "the 2nd International Conference on Digital Manufacturing and Automation(ICDMA)," (2011), 644-647. |
[34] |
X. J. Zhou, C. H. Yang and W. H. Gui, A new transformation into state transition algorithm for finding the global minimum, in "the 2nd International Conference on Intelligent Control and Information Processing," (2011), 674-678. |