January  2012, 8(1): 179-187. doi: 10.3934/jimo.2012.8.179

Topological essentiality in infinite games

1. 

School of Mathematics and Computer Science, Guizhou Normal University, Guizhou, Guiyang 550001, China

2. 

Department of Mathematics, Guizhou Uniersity, Guizhou, Guiyang 550025, China

3. 

Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

Received  February 2011 Revised  September 2011 Published  November 2011

By constructing a corresponding Nash map, we prove that every infinite game with compact metrizable sets of strategies and continuous payoffs has such a topological essential component that contains a minimal payoff-wise essential set containing a stable set, and deduce that every topological essential equilibrium is payoff-wise essential and so is perfect.
Citation: Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial and Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179
References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies, Math. Soc. Sci., 29 (1995), 151-164. doi: 10.1016/0165-4896(94)00765-Z.

[2]

P. Billingsley, "Convergence of Probability Measures," John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121-126. doi: 10.1073/pnas.38.2.121.

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games, J. Economic Theory, 31 (1983), 251-268.

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria, J. Economic Theory, 38 (1986), 261-279. doi: 10.1016/0022-0531(86)90118-3.

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.

[7]

S. Govindan and R. Wilson, Essential equilibria, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706-15711. doi: 10.1073/pnas.0506796102.

[8]

J. Hillas, On the definition of the strategic stability of equilibria, Econometrica, 58 (1990), 1365-1390. doi: 10.2307/2938320.

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II, Sci. Sinica, 12 (1963), 651-671.

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games, Sci. Sinica, 12 (1963), 951-964.

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria, Econometrica, 54 (1986), 1003-1037. doi: 10.2307/1912320.

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory, Int. J. of Game Theory, 18 (1989), 175-184. doi: 10.1007/BF01268156.

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games, Proc. Natl. Acad. Sci. USA, 36 (1950) 48-49. doi: 10.1073/pnas.36.1.48.

[15]

J. Nash, Non-cooperative games, Ann. Math. (2), 54 (1951), 286-295. doi: 10.2307/1969529.

[16]

B. O'Neill, Essential sets and fixed points, Am. J. Math., 75 (1953), 497-509.

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games, Int. J. of Game Theory, 4 (1975), 25-55. doi: 10.1007/BF01766400.

[18]

L. Simon, Local perfection, J. Economic Theory, 43 (1987), 134-156. doi: 10.1016/0022-0531(87)90118-9.

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games, Econometrica, 63 (1995), 1421-1443. doi: 10.2307/2171776.

[20]

A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767-776.

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria," Second edition, Springer-Verlag, New-York, 1991.

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games, Sci. Sinica, 11 (1962), 1307-1322.

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games, Appl. Math. Lett., 24 (2011), 253-256. doi: 10.1016/j.aml.2010.09.014.

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies, Int. J. of Game Theory, 35 (2007), 493-503. doi: 10.1007/s00182-006-0063-0.

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory, Appl. Math. Lett., 21 (2008), 489-495. doi: 10.1016/j.aml.2007.05.015.

show all references

References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies, Math. Soc. Sci., 29 (1995), 151-164. doi: 10.1016/0165-4896(94)00765-Z.

[2]

P. Billingsley, "Convergence of Probability Measures," John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121-126. doi: 10.1073/pnas.38.2.121.

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games, J. Economic Theory, 31 (1983), 251-268.

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria, J. Economic Theory, 38 (1986), 261-279. doi: 10.1016/0022-0531(86)90118-3.

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.

[7]

S. Govindan and R. Wilson, Essential equilibria, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706-15711. doi: 10.1073/pnas.0506796102.

[8]

J. Hillas, On the definition of the strategic stability of equilibria, Econometrica, 58 (1990), 1365-1390. doi: 10.2307/2938320.

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II, Sci. Sinica, 12 (1963), 651-671.

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games, Sci. Sinica, 12 (1963), 951-964.

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria, Econometrica, 54 (1986), 1003-1037. doi: 10.2307/1912320.

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory, Int. J. of Game Theory, 18 (1989), 175-184. doi: 10.1007/BF01268156.

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games, Proc. Natl. Acad. Sci. USA, 36 (1950) 48-49. doi: 10.1073/pnas.36.1.48.

[15]

J. Nash, Non-cooperative games, Ann. Math. (2), 54 (1951), 286-295. doi: 10.2307/1969529.

[16]

B. O'Neill, Essential sets and fixed points, Am. J. Math., 75 (1953), 497-509.

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games, Int. J. of Game Theory, 4 (1975), 25-55. doi: 10.1007/BF01766400.

[18]

L. Simon, Local perfection, J. Economic Theory, 43 (1987), 134-156. doi: 10.1016/0022-0531(87)90118-9.

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games, Econometrica, 63 (1995), 1421-1443. doi: 10.2307/2171776.

[20]

A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767-776.

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria," Second edition, Springer-Verlag, New-York, 1991.

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games, Sci. Sinica, 11 (1962), 1307-1322.

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games, Appl. Math. Lett., 24 (2011), 253-256. doi: 10.1016/j.aml.2010.09.014.

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies, Int. J. of Game Theory, 35 (2007), 493-503. doi: 10.1007/s00182-006-0063-0.

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory, Appl. Math. Lett., 21 (2008), 489-495. doi: 10.1016/j.aml.2007.05.015.

[1]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[2]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[3]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[4]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[5]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[6]

Ali Naimi-Sadigh, S. Kamal Chaharsooghi, Marzieh Mozafari. Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1423-1450. doi: 10.3934/jimo.2020028

[7]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems and Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[8]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[9]

Narges Torabi Golsefid, Maziar Salahi. Second order cone programming formulation of the fixed cost allocation in DEA based on Nash bargaining game. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021032

[10]

Georg Ostrovski, Sebastian van Strien. Payoff performance of fictitious play. Journal of Dynamics and Games, 2014, 1 (4) : 621-638. doi: 10.3934/jdg.2014.1.621

[11]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[12]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[13]

Lasse Kliemann, Elmira Shirazi Sheykhdarabadi, Anand Srivastav. Price of anarchy for graph coloring games with concave payoff. Journal of Dynamics and Games, 2017, 4 (1) : 41-58. doi: 10.3934/jdg.2017003

[14]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[15]

Janos Kollar. The Nash conjecture for threefolds. Electronic Research Announcements, 1998, 4: 63-73.

[16]

William Geller, Bruce Kitchens, Michał Misiurewicz. Microdynamics for Nash maps. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1007-1024. doi: 10.3934/dcds.2010.27.1007

[17]

Simon Hoof. Cooperative dynamic advertising via state-dependent payoff weights. Journal of Dynamics and Games, 2019, 6 (3) : 195-209. doi: 10.3934/jdg.2019014

[18]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[19]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130.

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]