
Previous Article
A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations
 JIMO Home
 This Issue

Next Article
A note on the subtree ordered median problem in networks based on nestedness property
Optimal inventory control with fixed ordering cost for selling by internet auctions
1.  School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105, China 
2.  School of Management, Fudan University, Shanghai 200433 
References:
[1] 
K. J. Arrow, T. E. Harris and J. Marschak, Optimal inventory policy,, Econometrica, 19 (1951), 250. doi: 10.2307/1906813. 
[2] 
D. Bertsekas, "Dynamic Programming and Optimal Control,", Vol. 2, (1995). 
[3] 
D. Blackwell, Discrete dynamic programming,, Annals of Mathematics Statistics, 33 (1962), 719. doi: 10.1214/aoms/1177704593. 
[4] 
S. Bollapragada and T. E. Morton, A simple heuristic for computing nonstationary $(s, S)$ policies,, Operations Research, 47 (1999), 576. doi: 10.1287/opre.47.4.576. 
[5] 
L. Caccetta and E. Mardaneh, Joint pricing and production planning for fixed priced multiple products with backorders,, Journal of Industrial and Management Optimization, 6 (2010), 123. 
[6] 
F. Chen, Auctioning supply contracts,, Management Science, 53 (2007), 1562. doi: 10.1287/mnsc.1070.0716. 
[7] 
X. Chen and D. SimchiLevi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case,, Operations Research, 52 (2004), 887. doi: 10.1287/opre.1040.0127. 
[8] 
X. Chen and D. SimchiLevi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The infinite horizon case,, Mathematics of Operations Research, 29 (2004), 698. doi: 10.1287/moor.1040.0093. 
[9] 
Y. Chen, S. Ray and Y. Song, Optimal pricing and inventory control policy in periodicreview sysytems with fixed ordering cost and lost sales,, Naval Research Logistics, 53 (2006), 117. doi: 10.1002/nav.20127. 
[10]  
[11] 
L. Du, Q. Hu and W. Yue, Analysis and evaluation for optimal allocation in sequential internet auction systems with reserve price,, Dynamics of Continuous, 12 (2005), 617. 
[12] 
A. Federgruen and A. Heching, Combined pricing and inventory control under uncertainty,, Operations Research, 47 (1999), 454. doi: 10.1287/opre.47.3.454. 
[13] 
E. L. Feiberg and M. E. Lewis, Optimality inequalities for average cost Markov decision processes and the optimality of $(s, S)$ policies,, Working paper, (2006). 
[14] 
Q. Feng, S. P. Sethi, H. Yan and H. Zhang, Optimality and nonoptimality of the basestock policy in inventory problems with multiple delivery modes,, Journal of Industrial and Management Optimization, 2 (2006), 19. doi: 10.3934/jimo.2006.2.19. 
[15] 
Q. Hu and W. Yue, "Markov Decision Processes with Their Applications,", Advances in Mechanics and Mathematics, 14 (2008). 
[16] 
W. T. Huh and G. Janakiraman, $(s, S)$ optimality in joint inventorypricing control: An alternate approach,, Operations Research, 56 (2008), 783. doi: 10.1287/opre.1070.0462. 
[17] 
W. T. Huh and G. Janakiraman, Inventory management with auctions and other sales channels: Optimality of $(s, S)$ policies,, Management Science, 54 (2008), 139. doi: 10.1287/mnsc.1070.0767. 
[18] 
D. Iglehart, Optimality of $(s, S)$ policies in the infinitehorizon dynamic inventory problem,, Management Science, 9 (1963), 259. doi: 10.1287/mnsc.9.2.259. 
[19] 
D. Iglehart, Dynamic programming and the analysis of inventory problems,, in, (1963). 
[20] 
E. Maskin and J. Riley, Optimal multiunit auctions,, in, (2000), 312. 
[21] 
R. Myerson, Optimal auction design,, Mathematics of Operations Research, 6 (1981), 58. doi: 10.1287/moor.6.1.58. 
[22] 
S. Nahmias, "Production and Operation Analysis,", 4^{th} edition, (2001). 
[23] 
E. L. Porteus, "Foundations of Stochastic Inventory Theory,", Stanford University Press, (2002). 
[24] 
E. Pinker, A. Seidmann and Y. Vakrat, Using transaction data for the design of sequential, multiunit, online auctions,, Working paper CIS0003, (2001), 00. 
[25] 
E. Pinker, A. Seidmann and Y. Vakrat, Managing online auctions: Current business and research issues,, Management Science, 49 (2003), 1457. doi: 10.1287/mnsc.49.11.1457.20584. 
[26] 
H. Scarf, The optimality of $(s, S)$ policies in the dynamic inventory problem,, in, (1960), 196. 
[27] 
A. Segev, C. Beam and J. Shanthikumar, Optimal design of internetbased auctions,, Information Technology and Mangement, 2 (2001), 121. doi: 10.1023/A:1011411801246. 
[28] 
S. P. Sethi and F. Cheng, Optimality of $(s, S)$ policies in inventory models with Markovian demand,, Operations Research, 45 (1997), 931. doi: 10.1287/opre.45.6.931. 
[29] 
Y. Song, S. Ray and T. Boyaci, Optimal dynamic joint inventorypricing control for multiplicative demand with fixed order costs and lost sales,, Operations Research, 57 (2009), 245. doi: 10.1287/opre.1080.0530. 
[30] 
A. F. Veinott, On the optimality of $(s, S)$ inventory policies: New conditions and a new proof,, SIAM Journal on Applied Mathematics, 14 (1966), 1067. doi: 10.1137/0114086. 
[31] 
G. Vulcano, G. J. van Ryzin and C. Maglaras, Optimal dynamic auctions for revenue management,, Management Science, 48 (2002), 1388. doi: 10.1287/mnsc.48.11.1388.269. 
[32] 
R. J. Weber, Multipleobject auctions,, in, (1983), 165. 
[33] 
C. A. Yano and S. M. Gilbert, Coordinated pricing and producion/procurement decisions, A review,, in, (2004). 
[34] 
Y. S. Zheng, A simple proof for optimality of $(s, S)$ policies in the infinitehorizon inventory systems,, Journal of Applied Probability, 28 (1991), 802. doi: 10.2307/3214683. 
[35] 
Y. S. Zheng and A. Federgruen, Finding optimal $(s, S)$ policies is about as simple as evaluating a single policy,, Operations Research, 39 (1991), 654. doi: 10.1287/opre.39.4.654. 
[36] 
P. H. Zipkin, "Foundations of Inventory Management,", McGraw Hill, (2000). 
show all references
References:
[1] 
K. J. Arrow, T. E. Harris and J. Marschak, Optimal inventory policy,, Econometrica, 19 (1951), 250. doi: 10.2307/1906813. 
[2] 
D. Bertsekas, "Dynamic Programming and Optimal Control,", Vol. 2, (1995). 
[3] 
D. Blackwell, Discrete dynamic programming,, Annals of Mathematics Statistics, 33 (1962), 719. doi: 10.1214/aoms/1177704593. 
[4] 
S. Bollapragada and T. E. Morton, A simple heuristic for computing nonstationary $(s, S)$ policies,, Operations Research, 47 (1999), 576. doi: 10.1287/opre.47.4.576. 
[5] 
L. Caccetta and E. Mardaneh, Joint pricing and production planning for fixed priced multiple products with backorders,, Journal of Industrial and Management Optimization, 6 (2010), 123. 
[6] 
F. Chen, Auctioning supply contracts,, Management Science, 53 (2007), 1562. doi: 10.1287/mnsc.1070.0716. 
[7] 
X. Chen and D. SimchiLevi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case,, Operations Research, 52 (2004), 887. doi: 10.1287/opre.1040.0127. 
[8] 
X. Chen and D. SimchiLevi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The infinite horizon case,, Mathematics of Operations Research, 29 (2004), 698. doi: 10.1287/moor.1040.0093. 
[9] 
Y. Chen, S. Ray and Y. Song, Optimal pricing and inventory control policy in periodicreview sysytems with fixed ordering cost and lost sales,, Naval Research Logistics, 53 (2006), 117. doi: 10.1002/nav.20127. 
[10]  
[11] 
L. Du, Q. Hu and W. Yue, Analysis and evaluation for optimal allocation in sequential internet auction systems with reserve price,, Dynamics of Continuous, 12 (2005), 617. 
[12] 
A. Federgruen and A. Heching, Combined pricing and inventory control under uncertainty,, Operations Research, 47 (1999), 454. doi: 10.1287/opre.47.3.454. 
[13] 
E. L. Feiberg and M. E. Lewis, Optimality inequalities for average cost Markov decision processes and the optimality of $(s, S)$ policies,, Working paper, (2006). 
[14] 
Q. Feng, S. P. Sethi, H. Yan and H. Zhang, Optimality and nonoptimality of the basestock policy in inventory problems with multiple delivery modes,, Journal of Industrial and Management Optimization, 2 (2006), 19. doi: 10.3934/jimo.2006.2.19. 
[15] 
Q. Hu and W. Yue, "Markov Decision Processes with Their Applications,", Advances in Mechanics and Mathematics, 14 (2008). 
[16] 
W. T. Huh and G. Janakiraman, $(s, S)$ optimality in joint inventorypricing control: An alternate approach,, Operations Research, 56 (2008), 783. doi: 10.1287/opre.1070.0462. 
[17] 
W. T. Huh and G. Janakiraman, Inventory management with auctions and other sales channels: Optimality of $(s, S)$ policies,, Management Science, 54 (2008), 139. doi: 10.1287/mnsc.1070.0767. 
[18] 
D. Iglehart, Optimality of $(s, S)$ policies in the infinitehorizon dynamic inventory problem,, Management Science, 9 (1963), 259. doi: 10.1287/mnsc.9.2.259. 
[19] 
D. Iglehart, Dynamic programming and the analysis of inventory problems,, in, (1963). 
[20] 
E. Maskin and J. Riley, Optimal multiunit auctions,, in, (2000), 312. 
[21] 
R. Myerson, Optimal auction design,, Mathematics of Operations Research, 6 (1981), 58. doi: 10.1287/moor.6.1.58. 
[22] 
S. Nahmias, "Production and Operation Analysis,", 4^{th} edition, (2001). 
[23] 
E. L. Porteus, "Foundations of Stochastic Inventory Theory,", Stanford University Press, (2002). 
[24] 
E. Pinker, A. Seidmann and Y. Vakrat, Using transaction data for the design of sequential, multiunit, online auctions,, Working paper CIS0003, (2001), 00. 
[25] 
E. Pinker, A. Seidmann and Y. Vakrat, Managing online auctions: Current business and research issues,, Management Science, 49 (2003), 1457. doi: 10.1287/mnsc.49.11.1457.20584. 
[26] 
H. Scarf, The optimality of $(s, S)$ policies in the dynamic inventory problem,, in, (1960), 196. 
[27] 
A. Segev, C. Beam and J. Shanthikumar, Optimal design of internetbased auctions,, Information Technology and Mangement, 2 (2001), 121. doi: 10.1023/A:1011411801246. 
[28] 
S. P. Sethi and F. Cheng, Optimality of $(s, S)$ policies in inventory models with Markovian demand,, Operations Research, 45 (1997), 931. doi: 10.1287/opre.45.6.931. 
[29] 
Y. Song, S. Ray and T. Boyaci, Optimal dynamic joint inventorypricing control for multiplicative demand with fixed order costs and lost sales,, Operations Research, 57 (2009), 245. doi: 10.1287/opre.1080.0530. 
[30] 
A. F. Veinott, On the optimality of $(s, S)$ inventory policies: New conditions and a new proof,, SIAM Journal on Applied Mathematics, 14 (1966), 1067. doi: 10.1137/0114086. 
[31] 
G. Vulcano, G. J. van Ryzin and C. Maglaras, Optimal dynamic auctions for revenue management,, Management Science, 48 (2002), 1388. doi: 10.1287/mnsc.48.11.1388.269. 
[32] 
R. J. Weber, Multipleobject auctions,, in, (1983), 165. 
[33] 
C. A. Yano and S. M. Gilbert, Coordinated pricing and producion/procurement decisions, A review,, in, (2004). 
[34] 
Y. S. Zheng, A simple proof for optimality of $(s, S)$ policies in the infinitehorizon inventory systems,, Journal of Applied Probability, 28 (1991), 802. doi: 10.2307/3214683. 
[35] 
Y. S. Zheng and A. Federgruen, Finding optimal $(s, S)$ policies is about as simple as evaluating a single policy,, Operations Research, 39 (1991), 654. doi: 10.1287/opre.39.4.654. 
[36] 
P. H. Zipkin, "Foundations of Inventory Management,", McGraw Hill, (2000). 
[1] 
Tassilo Küpper. Bifurcation revisited along footprints of Jürgen Scheurle. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 111. doi: 10.3934/dcdss.2020061 
[2] 
Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant Junitary factor and operatorvalued transfer functions. Conference Publications, 2003, 2003 (Special) : 4856. doi: 10.3934/proc.2003.2003.48 
[3] 
SungSeok Ko. A nonhomogeneous quasibirthdeath process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2017, 13 (5) : 119. doi: 10.3934/jimo.2019009 
[4] 
Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639659. doi: 10.3934/jdg.2014.1.639 
[5] 
Alberto Bressan, Yilun Jiang. The vanishing viscosity limit for a system of HJ equations related to a debt management problem. Discrete & Continuous Dynamical Systems  S, 2018, 11 (5) : 793824. doi: 10.3934/dcdss.2018050 
[6] 
Pierluigi Colli, Gianni Gilardi, Dietmar Hömberg, Pavel Krejčí, Elisabetta Rocca. Preface: Special issue dedicated to Jürgen Sprekels on the occasion of his 65th birthday. Discrete & Continuous Dynamical Systems  A, 2015, 35 (6) : iii. doi: 10.3934/dcds.2015.35.6i 
[7] 
Vladimir Ejov, Anatoli Torokhti. How to transform matrices $U_1, \ldots, U_p$ to matrices $V_1, \ldots, V_p$ so that $V_i V_j^T= {\mathbb O} $ if $ i \neq j $?. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 293299. doi: 10.3934/naco.2012.2.293 
[8] 
Shan Gao, Jinting Wang. On a discretetime GI$^X$/Geo/1/NG queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779806. doi: 10.3934/jimo.2015.11.779 
[9] 
Shu Zhang, Jian Xu. Timevarying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 653668. doi: 10.3934/dcdsb.2011.16.653 
[10] 
A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429444. doi: 10.3934/jimo.2007.3.429 
[11] 
Alexander O. Brown, Christopher S. Tang. The impact of alternative performance measures on singleperiod inventory policy. Journal of Industrial & Management Optimization, 2006, 2 (3) : 297318. doi: 10.3934/jimo.2006.2.297 
[12] 
Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 11891206. doi: 10.3934/dcdsb.2017058 
[13] 
Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585596. doi: 10.3934/jimo.2007.3.585 
[14] 
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 10051023. doi: 10.3934/dcds.2009.24.1005 
[15] 
Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285297. doi: 10.3934/jimo.2012.8.285 
[16] 
Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decisionmaking process. Journal of Industrial & Management Optimization, 2018, 14 (4) : 15011519. doi: 10.3934/jimo.2018018 
[17] 
Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semiMarkov decision processes with loss rates. Journal of Dynamics & Games, 2018, 5 (2) : 143163. doi: 10.3934/jdg.2018009 
[18] 
Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857876. doi: 10.3934/jimo.2017079 
[19] 
JuiJung Liao, WeiChun Lee, KuoNan Huang, YungFu Huang. Optimal ordering policy for a twowarehouse inventory model use of twolevel trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 16611683. doi: 10.3934/jimo.2017012 
[20] 
Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendormanaged inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439459. doi: 10.3934/jimo.2015.11.439 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]