January  2012, 8(1): 229-242. doi: 10.3934/jimo.2012.8.229

On the triality theory for a quartic polynomial optimization problem

1. 

School of Sciences, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

2. 

School of Science, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

Received  July 2011 Revised  September 2011 Published  November 2011

This paper presents a detailed proof of the triality theorem for a class of fourth-order polynomial optimization problems. The method is based on linear algebra but it solves an open problem on the double-min duality. Results show that the triality theory holds strongly in the tri-duality form for our problem if the primal problem and its canonical dual have the same dimension; otherwise, both the canonical min-max duality and the double-max duality still hold strongly, but the double-min duality holds weakly in a symmetrical form. Some numerical examples are presented to illustrate that this theory can be used to identify not only the global minimum, but also the local minimum and local maximum.
Citation: David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229
References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory, in "Proc. of the Fifth Pan American Congress of Applied Mechanics" (eds. L. A. Godoy and L. E. Suarez), Vol. 4, Applied Mechanics in Americans, The University of Iowa, Iowa City, 1996.

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications," Nonconvex Optimization and its Applications, 39, Kluwer Academic Publishers, Dordrecht, 2000.

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization, Optim., 52 (2003), 467-493. doi: 10.1080/02331930310001611501.

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization, Comput. Chem., 33 (2009), 1964-1972. doi: 10.1016/j.compchemeng.2009.06.009.

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation, Quart. J. Mech. Appl. Math., 61 (2008), 497-522. doi: 10.1093/qjmam/hbn014.

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization, in "Advances in Applied Mathematics and Global Optimization," Adv. Mech. Math., 17, Springer, New York, (2009), 257-326.

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids, International Journal of Solids and Structures, 45 (2008), 3660-3673. doi: 10.1016/j.ijsolstr.2007.08.027.

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., (). 

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis," Cambridge University Press, Cambridge, 1985.

[10]

A. Jaffe, Constructive quantum field theory, in "Mathematical Physics 2000" (eds. A. Fokas, A. Grigoryan, T. Kibble and B. Zegarlinski), Imperial College Press, London, (2000), 111-127.

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe, Aust. J. Phys., 50 (1997), 697-722. doi: 10.1071/P96076.

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density", J. Statist. Phys., 20 (1979), 197-244. doi: 10.1007/BF01011513.

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function, Applicable Analysis, 90 2010, 1111-1121. doi: 10.1080/00036811.2010.483427.

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results, J. Glob. Optim., 49 (2011), 173-183. doi: 10.1007/s10898-010-9592-y.

show all references

References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory, in "Proc. of the Fifth Pan American Congress of Applied Mechanics" (eds. L. A. Godoy and L. E. Suarez), Vol. 4, Applied Mechanics in Americans, The University of Iowa, Iowa City, 1996.

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications," Nonconvex Optimization and its Applications, 39, Kluwer Academic Publishers, Dordrecht, 2000.

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization, Optim., 52 (2003), 467-493. doi: 10.1080/02331930310001611501.

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization, Comput. Chem., 33 (2009), 1964-1972. doi: 10.1016/j.compchemeng.2009.06.009.

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation, Quart. J. Mech. Appl. Math., 61 (2008), 497-522. doi: 10.1093/qjmam/hbn014.

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization, in "Advances in Applied Mathematics and Global Optimization," Adv. Mech. Math., 17, Springer, New York, (2009), 257-326.

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids, International Journal of Solids and Structures, 45 (2008), 3660-3673. doi: 10.1016/j.ijsolstr.2007.08.027.

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., (). 

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis," Cambridge University Press, Cambridge, 1985.

[10]

A. Jaffe, Constructive quantum field theory, in "Mathematical Physics 2000" (eds. A. Fokas, A. Grigoryan, T. Kibble and B. Zegarlinski), Imperial College Press, London, (2000), 111-127.

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe, Aust. J. Phys., 50 (1997), 697-722. doi: 10.1071/P96076.

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density", J. Statist. Phys., 20 (1979), 197-244. doi: 10.1007/BF01011513.

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function, Applicable Analysis, 90 2010, 1111-1121. doi: 10.1080/00036811.2010.483427.

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results, J. Glob. Optim., 49 (2011), 173-183. doi: 10.1007/s10898-010-9592-y.

[1]

Radu Strugariu, Mircea D. Voisei, Constantin Zălinescu. Counter-examples in bi-duality, triality and tri-duality. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1453-1468. doi: 10.3934/dcds.2011.31.1453

[2]

Jutamas Kerdkaew, Rabian Wangkeeree, Rattanaporn Wangkeeree. Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 93-107. doi: 10.3934/naco.2021053

[3]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[4]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial and Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[5]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial and Management Optimization, 2022, 18 (2) : 731-745. doi: 10.3934/jimo.2020176

[6]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[7]

He Huang, Zhen He. A global optimization method for multiple response optimization problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022016

[8]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[9]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial and Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[10]

T. L. Mason, C. Emelle, J. van Berkel, A. M. Bagirov, F. Kampas, J. D. Pintér. Integrated production system optimization using global optimization techniques. Journal of Industrial and Management Optimization, 2007, 3 (2) : 257-277. doi: 10.3934/jimo.2007.3.257

[11]

Shenggui Zhang. A sufficient condition of Euclidean rings given by polynomial optimization over a box. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 93-101. doi: 10.3934/naco.2014.4.93

[12]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[13]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[14]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial and Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[15]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[16]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial and Management Optimization, 2019, 15 (1) : 113-130. doi: 10.3934/jimo.2018035

[17]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial and Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

[18]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial and Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[19]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[20]

Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]