January  2012, 8(1): 229-242. doi: 10.3934/jimo.2012.8.229

On the triality theory for a quartic polynomial optimization problem

1. 

School of Sciences, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

2. 

School of Science, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

Received  July 2011 Revised  September 2011 Published  November 2011

This paper presents a detailed proof of the triality theorem for a class of fourth-order polynomial optimization problems. The method is based on linear algebra but it solves an open problem on the double-min duality. Results show that the triality theory holds strongly in the tri-duality form for our problem if the primal problem and its canonical dual have the same dimension; otherwise, both the canonical min-max duality and the double-max duality still hold strongly, but the double-min duality holds weakly in a symmetrical form. Some numerical examples are presented to illustrate that this theory can be used to identify not only the global minimum, but also the local minimum and local maximum.
Citation: David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229
References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory,, in, (1996). Google Scholar

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications,", Nonconvex Optimization and its Applications, 39 (2000). Google Scholar

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization,, Optim., 52 (2003), 467. doi: 10.1080/02331930310001611501. Google Scholar

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization,, Comput. Chem., 33 (2009), 1964. doi: 10.1016/j.compchemeng.2009.06.009. Google Scholar

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation,, Quart. J. Mech. Appl. Math., 61 (2008), 497. doi: 10.1093/qjmam/hbn014. Google Scholar

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization,, in, 17 (2009), 257. Google Scholar

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids,, International Journal of Solids and Structures, 45 (2008), 3660. doi: 10.1016/j.ijsolstr.2007.08.027. Google Scholar

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., (). Google Scholar

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985). Google Scholar

[10]

A. Jaffe, Constructive quantum field theory,, in, (2000), 111. Google Scholar

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe,, Aust. J. Phys., 50 (1997), 697. doi: 10.1071/P96076. Google Scholar

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density",, J. Statist. Phys., 20 (1979), 197. doi: 10.1007/BF01011513. Google Scholar

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function,, Applicable Analysis, 90 (2010), 1111. doi: 10.1080/00036811.2010.483427. Google Scholar

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results,, J. Glob. Optim., 49 (2011), 173. doi: 10.1007/s10898-010-9592-y. Google Scholar

show all references

References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory,, in, (1996). Google Scholar

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications,", Nonconvex Optimization and its Applications, 39 (2000). Google Scholar

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization,, Optim., 52 (2003), 467. doi: 10.1080/02331930310001611501. Google Scholar

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization,, Comput. Chem., 33 (2009), 1964. doi: 10.1016/j.compchemeng.2009.06.009. Google Scholar

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation,, Quart. J. Mech. Appl. Math., 61 (2008), 497. doi: 10.1093/qjmam/hbn014. Google Scholar

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization,, in, 17 (2009), 257. Google Scholar

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids,, International Journal of Solids and Structures, 45 (2008), 3660. doi: 10.1016/j.ijsolstr.2007.08.027. Google Scholar

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., (). Google Scholar

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985). Google Scholar

[10]

A. Jaffe, Constructive quantum field theory,, in, (2000), 111. Google Scholar

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe,, Aust. J. Phys., 50 (1997), 697. doi: 10.1071/P96076. Google Scholar

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density",, J. Statist. Phys., 20 (1979), 197. doi: 10.1007/BF01011513. Google Scholar

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function,, Applicable Analysis, 90 (2010), 1111. doi: 10.1080/00036811.2010.483427. Google Scholar

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results,, J. Glob. Optim., 49 (2011), 173. doi: 10.1007/s10898-010-9592-y. Google Scholar

[1]

Radu Strugariu, Mircea D. Voisei, Constantin Zălinescu. Counter-examples in bi-duality, triality and tri-duality. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1453-1468. doi: 10.3934/dcds.2011.31.1453

[2]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[3]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[4]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[5]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[6]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial & Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[7]

T. L. Mason, C. Emelle, J. van Berkel, A. M. Bagirov, F. Kampas, J. D. Pintér. Integrated production system optimization using global optimization techniques. Journal of Industrial & Management Optimization, 2007, 3 (2) : 257-277. doi: 10.3934/jimo.2007.3.257

[8]

Shenggui Zhang. A sufficient condition of Euclidean rings given by polynomial optimization over a box. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 93-101. doi: 10.3934/naco.2014.4.93

[9]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[10]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[11]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[12]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial & Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

[13]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[14]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[15]

Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69

[16]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial & Management Optimization, 2019, 15 (1) : 113-130. doi: 10.3934/jimo.2018035

[17]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[18]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[19]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[20]

Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]