January  2012, 8(1): 263-269. doi: 10.3934/jimo.2012.8.263

Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management

1. 

School of Economics and Management, Southwest Jiaotong University, Chengdu, Sichuan 610031

2. 

College of Business, Chung Yuan Christian University, Chung Li 32023, Taiwan

Received  October 2009 Revised  October 2011 Published  November 2011

Li et al. [Journal of Industrial and Management Optimization 5 (2009) 867-880] develop a model to determine an optimal replenishment policy with defective items and shortage backlogging under conditions of permissible delay in payments. They used the optimization technique based on differential calculus to determine an optimal replenishment policy. The main purpose of this paper is to solve the inventory problem in Li et al. (2009) by the algebraic method to simplify the solution procedures.
Citation: Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263
References:
[1]

L. E. Cárdenas-Barrón, Observation on: Economic production quantity model for items with imperfect quality,, International Journal of Production Economics, 67 (2000), 201. doi: 10.1016/S0925-5273(00)00059-1. Google Scholar

[2]

L. E. Cárdenas-Barrón, A simple method to compute economic order quantities: Some observations,, Applied Mathematical Modelling, 34 (2010), 1684. doi: 10.1016/j.apm.2009.08.024. Google Scholar

[3]

B. E. Castello and A. J. Goldman, EOQ rides again!,, Perspectives in Operations Research, 36 (2006), 307. doi: 10.1007/978-0-387-39934-8_18. Google Scholar

[4]

W. M. Chan, R. N. Ibrahim and P. B Lochert, A new EPQ model: Integrating lower pricing rework and reject situations,, Production Planning and Control, 14 (2003), 588. doi: 10.1080/09537280310001626179. Google Scholar

[5]

H.-C. Chang, An application of fuzzy sets theory to the EOQ model with imperfect quality items,, Computers and Operations Research, 31 (2004), 2079. doi: 10.1016/S0305-0548(03)00166-7. Google Scholar

[6]

H. C. Chang and C. H. Ho, Exact closed-form solutions for optimal inventory model for items with imperfect quality and shortage backlogging,, Omega, 38 (2010), 233. doi: 10.1016/j.omega.2009.09.006. Google Scholar

[7]

S. K. J. Chang, J. P. C. Chuang and H. J. Chen, Short comments on technical note-the EOQ and EPQ models with shortages derived without derivatives,, International Journal of Production Economics, 97 (2005), 241. doi: 10.1016/j.ijpe.2004.07.002. Google Scholar

[8]

L. H. Chen and F. S. Kang., Coordination between vendor and buyer considering trade credit and items with imperfect quality,, International Journal of Production Economics, 123 (2010), 52. Google Scholar

[9]

K.-J. Chung, C. C. Her and S. D. Lin, A two-warehouse inventory model with imperfect quality production processes,, Computers and Industrial Engineering, 56 (2009), 193. doi: 10.1016/j.cie.2008.05.005. Google Scholar

[10]

K.-J. Chung and C.-K. Huang, An ordering policy with allowable shortage and permissible delay in payments,, Applied Mathematical Modelling, 33 (2009), 2518. doi: 10.1016/j.apm.2008.07.016. Google Scholar

[11]

K.-J. Chung and Y. F. Huang, Retailer's optimal cycle times in the EOQ model with imperfect quality and a permissible credit period,, Quality and Quantity, 40 (2006), 59. doi: 10.1007/s11135-005-5356-z. Google Scholar

[12]

A. Eroglu and G. Ozdemir, An economic order quantity model with defective items and shortages,, International Journal of Production Economics, 106 (2007), 544. doi: 10.1016/j.ijpe.2006.06.015. Google Scholar

[13]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar

[14]

S. K. Goyal and L. E. Cárdenas-Barrón, Note on: Economic production quantity model for items with imperfect quality-a practical approach,, International Journal of Production Economics, 77 (2002), 85. doi: 10.1016/S0925-5273(01)00203-1. Google Scholar

[15]

R. W. Grubbstrom and A. Erdem, EOQ with backlogging derived without derivatives,, International Journal of Production Economics, 59 (1999), 529. doi: 10.1016/S0925-5273(98)00015-2. Google Scholar

[16]

M. Khan, M. Y. Jaber, A. L. Guiffrida and S. Zolfaghari, A review of extensions of a modified EOQ model for imperfect quality items,, International Journal of Production Economics, 132 (2011), 1. doi: 10.1016/j.ijpe.2011.03.009. Google Scholar

[17]

V. B. Kreng and S. J. Tan, Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy,, Expert Systems with Applications, 38 (2011), 9888. doi: 10.1016/j.eswa.2011.02.040. Google Scholar

[18]

J. Li, H. Feng and M. Wang, A replenishment policy with defective products, backlog and delay of payments,, Journal of Industrial and Management Optimization, 5 (2009), 867. doi: 10.3934/jimo.2009.5.867. Google Scholar

[19]

B. Maddah and M. Y. Jaber, Economic order quantity for items with imperfect quality: Revisited,, International Journal of Production Economics, 112 (2008), 808. doi: 10.1016/j.ijpe.2007.07.003. Google Scholar

[20]

Y. H. Oh and H. Hwang, Deterministic inventory model for recycling system,, Journal of Intelligent Manufacturing, 17 (2006), 423. doi: 10.1007/s10845-005-0015-8. Google Scholar

[21]

R. Ronald, G. K. Yang and P. Chu, Technical note: The EOQ and EPQ models with shortages derived without derivatives,, International Journal of Production Economics, 92 (2004), 197. doi: 10.1016/j.ijpe.2003.10.013. Google Scholar

[22]

M. K. Salameh and M. Y. Jaber, Economic production quantity model for items with imperfect quality,, International Journal of Production Economics, 64 (2000), 59. doi: 10.1016/S0925-5273(99)00044-4. Google Scholar

[23]

J.-T. Teng, A simple method to compute economic order quantities,, European Journal of Operational Research, 198 (2009), 351. doi: 10.1016/j.ejor.2008.05.019. Google Scholar

[24]

D. Varberg, E. J. Purcell and S. E. Steven, "Calculus,", 9th edition, (0745). Google Scholar

[25]

H. M. Wee, J. Yu and M. C. Chen, Optimal inventory model for items with imperfect quality and shortage backordering,, Omega, 35 (2007), 7. doi: 10.1016/j.omega.2005.01.019. Google Scholar

show all references

References:
[1]

L. E. Cárdenas-Barrón, Observation on: Economic production quantity model for items with imperfect quality,, International Journal of Production Economics, 67 (2000), 201. doi: 10.1016/S0925-5273(00)00059-1. Google Scholar

[2]

L. E. Cárdenas-Barrón, A simple method to compute economic order quantities: Some observations,, Applied Mathematical Modelling, 34 (2010), 1684. doi: 10.1016/j.apm.2009.08.024. Google Scholar

[3]

B. E. Castello and A. J. Goldman, EOQ rides again!,, Perspectives in Operations Research, 36 (2006), 307. doi: 10.1007/978-0-387-39934-8_18. Google Scholar

[4]

W. M. Chan, R. N. Ibrahim and P. B Lochert, A new EPQ model: Integrating lower pricing rework and reject situations,, Production Planning and Control, 14 (2003), 588. doi: 10.1080/09537280310001626179. Google Scholar

[5]

H.-C. Chang, An application of fuzzy sets theory to the EOQ model with imperfect quality items,, Computers and Operations Research, 31 (2004), 2079. doi: 10.1016/S0305-0548(03)00166-7. Google Scholar

[6]

H. C. Chang and C. H. Ho, Exact closed-form solutions for optimal inventory model for items with imperfect quality and shortage backlogging,, Omega, 38 (2010), 233. doi: 10.1016/j.omega.2009.09.006. Google Scholar

[7]

S. K. J. Chang, J. P. C. Chuang and H. J. Chen, Short comments on technical note-the EOQ and EPQ models with shortages derived without derivatives,, International Journal of Production Economics, 97 (2005), 241. doi: 10.1016/j.ijpe.2004.07.002. Google Scholar

[8]

L. H. Chen and F. S. Kang., Coordination between vendor and buyer considering trade credit and items with imperfect quality,, International Journal of Production Economics, 123 (2010), 52. Google Scholar

[9]

K.-J. Chung, C. C. Her and S. D. Lin, A two-warehouse inventory model with imperfect quality production processes,, Computers and Industrial Engineering, 56 (2009), 193. doi: 10.1016/j.cie.2008.05.005. Google Scholar

[10]

K.-J. Chung and C.-K. Huang, An ordering policy with allowable shortage and permissible delay in payments,, Applied Mathematical Modelling, 33 (2009), 2518. doi: 10.1016/j.apm.2008.07.016. Google Scholar

[11]

K.-J. Chung and Y. F. Huang, Retailer's optimal cycle times in the EOQ model with imperfect quality and a permissible credit period,, Quality and Quantity, 40 (2006), 59. doi: 10.1007/s11135-005-5356-z. Google Scholar

[12]

A. Eroglu and G. Ozdemir, An economic order quantity model with defective items and shortages,, International Journal of Production Economics, 106 (2007), 544. doi: 10.1016/j.ijpe.2006.06.015. Google Scholar

[13]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar

[14]

S. K. Goyal and L. E. Cárdenas-Barrón, Note on: Economic production quantity model for items with imperfect quality-a practical approach,, International Journal of Production Economics, 77 (2002), 85. doi: 10.1016/S0925-5273(01)00203-1. Google Scholar

[15]

R. W. Grubbstrom and A. Erdem, EOQ with backlogging derived without derivatives,, International Journal of Production Economics, 59 (1999), 529. doi: 10.1016/S0925-5273(98)00015-2. Google Scholar

[16]

M. Khan, M. Y. Jaber, A. L. Guiffrida and S. Zolfaghari, A review of extensions of a modified EOQ model for imperfect quality items,, International Journal of Production Economics, 132 (2011), 1. doi: 10.1016/j.ijpe.2011.03.009. Google Scholar

[17]

V. B. Kreng and S. J. Tan, Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy,, Expert Systems with Applications, 38 (2011), 9888. doi: 10.1016/j.eswa.2011.02.040. Google Scholar

[18]

J. Li, H. Feng and M. Wang, A replenishment policy with defective products, backlog and delay of payments,, Journal of Industrial and Management Optimization, 5 (2009), 867. doi: 10.3934/jimo.2009.5.867. Google Scholar

[19]

B. Maddah and M. Y. Jaber, Economic order quantity for items with imperfect quality: Revisited,, International Journal of Production Economics, 112 (2008), 808. doi: 10.1016/j.ijpe.2007.07.003. Google Scholar

[20]

Y. H. Oh and H. Hwang, Deterministic inventory model for recycling system,, Journal of Intelligent Manufacturing, 17 (2006), 423. doi: 10.1007/s10845-005-0015-8. Google Scholar

[21]

R. Ronald, G. K. Yang and P. Chu, Technical note: The EOQ and EPQ models with shortages derived without derivatives,, International Journal of Production Economics, 92 (2004), 197. doi: 10.1016/j.ijpe.2003.10.013. Google Scholar

[22]

M. K. Salameh and M. Y. Jaber, Economic production quantity model for items with imperfect quality,, International Journal of Production Economics, 64 (2000), 59. doi: 10.1016/S0925-5273(99)00044-4. Google Scholar

[23]

J.-T. Teng, A simple method to compute economic order quantities,, European Journal of Operational Research, 198 (2009), 351. doi: 10.1016/j.ejor.2008.05.019. Google Scholar

[24]

D. Varberg, E. J. Purcell and S. E. Steven, "Calculus,", 9th edition, (0745). Google Scholar

[25]

H. M. Wee, J. Yu and M. C. Chen, Optimal inventory model for items with imperfect quality and shortage backordering,, Omega, 35 (2007), 7. doi: 10.1016/j.omega.2005.01.019. Google Scholar

[1]

Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial & Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945

[2]

Jun Li, Hairong Feng, Mingchao Wang. A replenishment policy with defective products, backlog and delay of payments. Journal of Industrial & Management Optimization, 2009, 5 (4) : 867-880. doi: 10.3934/jimo.2009.5.867

[3]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

[4]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097

[5]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[6]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[7]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[8]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[9]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[10]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[11]

Biswajit Sarkar, Buddhadev Mandal, Sumon Sarkar. Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages. Journal of Industrial & Management Optimization, 2017, 13 (1) : 187-206. doi: 10.3934/jimo.2016011

[12]

Ganfu Wang, Xingzheng Ai, Chen Zheng, Li Zhong. Strategic inventory with competing suppliers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019048

[13]

Csilla Bujtás, Zsolt Tuza. Optimal batch codes: Many items or low retrieval requirement. Advances in Mathematics of Communications, 2011, 5 (3) : 529-541. doi: 10.3934/amc.2011.5.529

[14]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[15]

Mahdi Karimi, Seyed Jafar Sadjadi, Alireza Ghasemi Bijaghini. An economic order quantity for deteriorating items with allowable rework of deteriorated products. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1857-1879. doi: 10.3934/jimo.2018126

[16]

Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019085

[17]

Cheng-Kang Chen, Yi-Xiang Liao. A deteriorating inventory model for an intermediary firm under return on inventory investment maximization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 989-1000. doi: 10.3934/jimo.2014.10.989

[18]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[19]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[20]

Zvi Drezner, Carlton Scott. Approximate and exact formulas for the $(Q,r)$ inventory model. Journal of Industrial & Management Optimization, 2015, 11 (1) : 135-144. doi: 10.3934/jimo.2015.11.135

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]