April  2012, 8(2): 299-323. doi: 10.3934/jimo.2012.8.299

Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment

1. 

Department of Industrial Engineering and Operations Research, University of California, Berkeley, United States

2. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520, United States

3. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Received  October 2010 Revised  August 2011 Published  April 2012

We study the optimal demand allocation policies to induce high service capacity and achieve minimum expected sojourn times in equilibrium in a queueing system with multiple strategic servers. We propose the mixed threshold allocation policy as an optimal state-dependent policy that induces optimal service capacity from strategic servers. Compensation to the server can be paid at customer allocation or upon job completion. Our study focuses on the use of a multiple-server mixed threshold allocation policy to replicate the demand of a given state-independent policy to achieve a symmetric equilibrium with lower expected sojourn time. The results indicate that, under both payment schemes, for any given multiple-server state-independent policy, there exists a multiple-server threshold policy that produces identical demand allocation and Nash equilibrium (if any). Moreover, the policy can be designed to minimize the expected sojourn time at a symmetric equilibrium. Furthermore, under the payment-at-allocation scheme, our results, combining with existing results on the optimality of the multiple-server linear allocation policy, show that the mixed threshold policy can achieve the maximum feasible service capacity and thus the minimum feasible equilibrium expected sojourn time. Hence, our results agree with previous two-server results and affirm that a trade-off between incentives and efficiency need not exist in the case of multiple servers.
Citation: Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial and Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299
References:
[1]

G. Cachon and F. Zhang, Obtaining fast service in a queueing system via performance-based allocation of demand, Management Science, 53 (2007), 408-420. doi: 10.1287/mnsc.1060.0636.

[2]

W. Ching, S. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach, Journal of Industrial and Management Optimization, 6 (2010), 73-102. doi: 10.3934/jimo.2010.6.73.

[3]

S. Choi, X. Huang, W. Ching and M. Huang, Incentive effects of multiple-server queueing networks: the principal-agent perspective, East Asian Journal on Applied Mathematics, 1 (2011), 379-402.

[4]

S. Choi, X. Huang and W. Ching, Inducing optimal service capacities via performance-based allocation of demand in a queueing system with multiple servers, in "The 40th International Conference on Computers and Engineering," Hyogo, Japan, 2010.

[5]

T. Crabill, D. Gross and M. Magazine, A classified bibliography of research on optimal design and control of queues, Operations Research, 25 (1977), 219-232. doi: 10.1287/opre.25.2.219.

[6]

S. Gilbert and Z. Weng, Incentive effects favor nonconsolidating queues in a service system: The principal-agent perspective, Management Science, 44 (1998), 1662-1669. doi: 10.1287/mnsc.44.12.1662.

[7]

E. Kalai, M. Kamien and M. Rubinovitch, Optimal service speeds in a competitive environment, Management Science, 38 (1992), 1554-1163. doi: 10.1287/mnsc.38.8.1154.

[8]

J. Laffont and D. Martimort, "The Theory of Incentives: The Principal-Agent Model," Princeton University Press, Princeton, NJ, 2002.

[9]

W. Lin and P. Kumar, Optimal control of a queueing system with two heterogeneous servers, IEEE Trans. Automatic Control, 29 (1984), 696-703. doi: 10.1109/TAC.1984.1103637.

[10]

H. Luh and I. Viniotis, Threshold control policies for heterogeneous server systems, Mathematical Methods of Operations Research, 55 (2002), 121-142. doi: 10.1007/s001860100168.

[11]

M. Osborne, "An Introduction to Game Theory," Oxford University Press, New York, 2004.

[12]

M. Rubinovitch, The slow server problem, Journal of Applied Probability, 22 (1985), 205-213. doi: 10.2307/3213760.

[13]

F. Véricourt and Y. Zhou, On the incomplete results for the heterogeneous server problem, Queueing Systems, 52 (2006), 189-191. doi: 10.1007/s11134-006-5067-8.

[14]

F. Zhang, "Coordination of Lead Times in Supply Chains," Dissertation, University of Pennsylvania, Philadelphia, PA, 2004.

show all references

References:
[1]

G. Cachon and F. Zhang, Obtaining fast service in a queueing system via performance-based allocation of demand, Management Science, 53 (2007), 408-420. doi: 10.1287/mnsc.1060.0636.

[2]

W. Ching, S. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach, Journal of Industrial and Management Optimization, 6 (2010), 73-102. doi: 10.3934/jimo.2010.6.73.

[3]

S. Choi, X. Huang, W. Ching and M. Huang, Incentive effects of multiple-server queueing networks: the principal-agent perspective, East Asian Journal on Applied Mathematics, 1 (2011), 379-402.

[4]

S. Choi, X. Huang and W. Ching, Inducing optimal service capacities via performance-based allocation of demand in a queueing system with multiple servers, in "The 40th International Conference on Computers and Engineering," Hyogo, Japan, 2010.

[5]

T. Crabill, D. Gross and M. Magazine, A classified bibliography of research on optimal design and control of queues, Operations Research, 25 (1977), 219-232. doi: 10.1287/opre.25.2.219.

[6]

S. Gilbert and Z. Weng, Incentive effects favor nonconsolidating queues in a service system: The principal-agent perspective, Management Science, 44 (1998), 1662-1669. doi: 10.1287/mnsc.44.12.1662.

[7]

E. Kalai, M. Kamien and M. Rubinovitch, Optimal service speeds in a competitive environment, Management Science, 38 (1992), 1554-1163. doi: 10.1287/mnsc.38.8.1154.

[8]

J. Laffont and D. Martimort, "The Theory of Incentives: The Principal-Agent Model," Princeton University Press, Princeton, NJ, 2002.

[9]

W. Lin and P. Kumar, Optimal control of a queueing system with two heterogeneous servers, IEEE Trans. Automatic Control, 29 (1984), 696-703. doi: 10.1109/TAC.1984.1103637.

[10]

H. Luh and I. Viniotis, Threshold control policies for heterogeneous server systems, Mathematical Methods of Operations Research, 55 (2002), 121-142. doi: 10.1007/s001860100168.

[11]

M. Osborne, "An Introduction to Game Theory," Oxford University Press, New York, 2004.

[12]

M. Rubinovitch, The slow server problem, Journal of Applied Probability, 22 (1985), 205-213. doi: 10.2307/3213760.

[13]

F. Véricourt and Y. Zhou, On the incomplete results for the heterogeneous server problem, Queueing Systems, 52 (2006), 189-191. doi: 10.1007/s11134-006-5067-8.

[14]

F. Zhang, "Coordination of Lead Times in Supply Chains," Dissertation, University of Pennsylvania, Philadelphia, PA, 2004.

[1]

Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084

[2]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks and Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[3]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3269-3295. doi: 10.3934/jimo.2020118

[4]

Cheng-Ta Yeh, Yi-Kuei Lin. Component allocation cost minimization for a multistate computer network subject to a reliability threshold using tabu search. Journal of Industrial and Management Optimization, 2016, 12 (1) : 141-167. doi: 10.3934/jimo.2016.12.141

[5]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[6]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial and Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[7]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial and Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[8]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial and Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[9]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[10]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[11]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[12]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[13]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[14]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[15]

Joss Sánchez-Pérez. On the linearity property for allocation problems and bankruptcy problems. Journal of Dynamics and Games, 2018, 5 (1) : 9-20. doi: 10.3934/jdg.2018002

[16]

Chang-Yuan Cheng, Xingfu Zou. On predation effort allocation strategy over two patches. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1889-1915. doi: 10.3934/dcdsb.2020281

[17]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[18]

Reza Alizadeh Foroutan, Javad Rezaeian, Milad Shafipour. Bi-objective unrelated parallel machines scheduling problem with worker allocation and sequence dependent setup times considering machine eligibility and precedence constraints. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021190

[19]

Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3309-3332. doi: 10.3934/jimo.2020120

[20]

Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics and Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]