April  2012, 8(2): 299-323. doi: 10.3934/jimo.2012.8.299

Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment

1. 

Department of Industrial Engineering and Operations Research, University of California, Berkeley, United States

2. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520, United States

3. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Received  October 2010 Revised  August 2011 Published  April 2012

We study the optimal demand allocation policies to induce high service capacity and achieve minimum expected sojourn times in equilibrium in a queueing system with multiple strategic servers. We propose the mixed threshold allocation policy as an optimal state-dependent policy that induces optimal service capacity from strategic servers. Compensation to the server can be paid at customer allocation or upon job completion. Our study focuses on the use of a multiple-server mixed threshold allocation policy to replicate the demand of a given state-independent policy to achieve a symmetric equilibrium with lower expected sojourn time. The results indicate that, under both payment schemes, for any given multiple-server state-independent policy, there exists a multiple-server threshold policy that produces identical demand allocation and Nash equilibrium (if any). Moreover, the policy can be designed to minimize the expected sojourn time at a symmetric equilibrium. Furthermore, under the payment-at-allocation scheme, our results, combining with existing results on the optimality of the multiple-server linear allocation policy, show that the mixed threshold policy can achieve the maximum feasible service capacity and thus the minimum feasible equilibrium expected sojourn time. Hence, our results agree with previous two-server results and affirm that a trade-off between incentives and efficiency need not exist in the case of multiple servers.
Citation: Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299
References:
[1]

G. Cachon and F. Zhang, Obtaining fast service in a queueing system via performance-based allocation of demand,, Management Science, 53 (2007), 408.  doi: 10.1287/mnsc.1060.0636.  Google Scholar

[2]

W. Ching, S. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.  doi: 10.3934/jimo.2010.6.73.  Google Scholar

[3]

S. Choi, X. Huang, W. Ching and M. Huang, Incentive effects of multiple-server queueing networks: the principal-agent perspective,, East Asian Journal on Applied Mathematics, 1 (2011), 379.   Google Scholar

[4]

S. Choi, X. Huang and W. Ching, Inducing optimal service capacities via performance-based allocation of demand in a queueing system with multiple servers,, in, (2010).   Google Scholar

[5]

T. Crabill, D. Gross and M. Magazine, A classified bibliography of research on optimal design and control of queues,, Operations Research, 25 (1977), 219.  doi: 10.1287/opre.25.2.219.  Google Scholar

[6]

S. Gilbert and Z. Weng, Incentive effects favor nonconsolidating queues in a service system: The principal-agent perspective,, Management Science, 44 (1998), 1662.  doi: 10.1287/mnsc.44.12.1662.  Google Scholar

[7]

E. Kalai, M. Kamien and M. Rubinovitch, Optimal service speeds in a competitive environment,, Management Science, 38 (1992), 1554.  doi: 10.1287/mnsc.38.8.1154.  Google Scholar

[8]

J. Laffont and D. Martimort, "The Theory of Incentives: The Principal-Agent Model,", Princeton University Press, (2002).   Google Scholar

[9]

W. Lin and P. Kumar, Optimal control of a queueing system with two heterogeneous servers,, IEEE Trans. Automatic Control, 29 (1984), 696.  doi: 10.1109/TAC.1984.1103637.  Google Scholar

[10]

H. Luh and I. Viniotis, Threshold control policies for heterogeneous server systems,, Mathematical Methods of Operations Research, 55 (2002), 121.  doi: 10.1007/s001860100168.  Google Scholar

[11]

M. Osborne, "An Introduction to Game Theory,", Oxford University Press, (2004).   Google Scholar

[12]

M. Rubinovitch, The slow server problem,, Journal of Applied Probability, 22 (1985), 205.  doi: 10.2307/3213760.  Google Scholar

[13]

F. Véricourt and Y. Zhou, On the incomplete results for the heterogeneous server problem,, Queueing Systems, 52 (2006), 189.  doi: 10.1007/s11134-006-5067-8.  Google Scholar

[14]

F. Zhang, "Coordination of Lead Times in Supply Chains,", Dissertation, (2004).   Google Scholar

show all references

References:
[1]

G. Cachon and F. Zhang, Obtaining fast service in a queueing system via performance-based allocation of demand,, Management Science, 53 (2007), 408.  doi: 10.1287/mnsc.1060.0636.  Google Scholar

[2]

W. Ching, S. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.  doi: 10.3934/jimo.2010.6.73.  Google Scholar

[3]

S. Choi, X. Huang, W. Ching and M. Huang, Incentive effects of multiple-server queueing networks: the principal-agent perspective,, East Asian Journal on Applied Mathematics, 1 (2011), 379.   Google Scholar

[4]

S. Choi, X. Huang and W. Ching, Inducing optimal service capacities via performance-based allocation of demand in a queueing system with multiple servers,, in, (2010).   Google Scholar

[5]

T. Crabill, D. Gross and M. Magazine, A classified bibliography of research on optimal design and control of queues,, Operations Research, 25 (1977), 219.  doi: 10.1287/opre.25.2.219.  Google Scholar

[6]

S. Gilbert and Z. Weng, Incentive effects favor nonconsolidating queues in a service system: The principal-agent perspective,, Management Science, 44 (1998), 1662.  doi: 10.1287/mnsc.44.12.1662.  Google Scholar

[7]

E. Kalai, M. Kamien and M. Rubinovitch, Optimal service speeds in a competitive environment,, Management Science, 38 (1992), 1554.  doi: 10.1287/mnsc.38.8.1154.  Google Scholar

[8]

J. Laffont and D. Martimort, "The Theory of Incentives: The Principal-Agent Model,", Princeton University Press, (2002).   Google Scholar

[9]

W. Lin and P. Kumar, Optimal control of a queueing system with two heterogeneous servers,, IEEE Trans. Automatic Control, 29 (1984), 696.  doi: 10.1109/TAC.1984.1103637.  Google Scholar

[10]

H. Luh and I. Viniotis, Threshold control policies for heterogeneous server systems,, Mathematical Methods of Operations Research, 55 (2002), 121.  doi: 10.1007/s001860100168.  Google Scholar

[11]

M. Osborne, "An Introduction to Game Theory,", Oxford University Press, (2004).   Google Scholar

[12]

M. Rubinovitch, The slow server problem,, Journal of Applied Probability, 22 (1985), 205.  doi: 10.2307/3213760.  Google Scholar

[13]

F. Véricourt and Y. Zhou, On the incomplete results for the heterogeneous server problem,, Queueing Systems, 52 (2006), 189.  doi: 10.1007/s11134-006-5067-8.  Google Scholar

[14]

F. Zhang, "Coordination of Lead Times in Supply Chains,", Dissertation, (2004).   Google Scholar

[1]

Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020084

[2]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[3]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020118

[4]

Cheng-Ta Yeh, Yi-Kuei Lin. Component allocation cost minimization for a multistate computer network subject to a reliability threshold using tabu search. Journal of Industrial & Management Optimization, 2016, 12 (1) : 141-167. doi: 10.3934/jimo.2016.12.141

[5]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[6]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[7]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[8]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[9]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[10]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[11]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[12]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[13]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[14]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[15]

Joss Sánchez-Pérez. On the linearity property for allocation problems and bankruptcy problems. Journal of Dynamics & Games, 2018, 5 (1) : 9-20. doi: 10.3934/jdg.2018002

[16]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[17]

Chang-Yuan Cheng, Xingfu Zou. On predation effort allocation strategy over two patches. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020281

[18]

Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020120

[19]

Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics & Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009

[20]

Shuang Zhao. Resource allocation flowshop scheduling with learning effect and slack due window assignment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020096

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]