April  2012, 8(2): 343-362. doi: 10.3934/jimo.2012.8.343

Robust portfolio selection with a combined WCVaR and factor model

1. 

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Received  March 2011 Revised  August 2011 Published  April 2012

In this paper, a portfolio selection model with a combined Worst-Case Conditional Value-at-Risk (WCVaR) and Multi-Factor Model is proposed. It is shown that the probability distributions in the definition of WCVaR can be determined by specifying the mean vectors under the assumption of multivariate normal distribution with a fixed variance-covariance matrix. The WCVaR minimization problem is then reformulated as a linear programming problem. In our numerical experiments, to compare the proposed model with the traditional mean variance model, we solve the two models using the real market data and present the efficient frontiers to illustrate the difference. The comparison reveals that the WCVaR minimization model is more robust than the traditional one in a market recession period and it can be used in a long-term investment.
Citation: Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial and Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343
References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[2]

T. S. Beder, VAR: Seductive but dangerous, Financial Analysts Journal, 51 (1995), 12-24. doi: 10.2469/faj.v51.n5.1932.

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations Research Letter, 25 (1999), 1-13. doi: 10.1016/S0167-6377(99)00016-4.

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556. doi: 10.1287/opre.51.4.543.16101.

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance, Annals of Operations Research, 176 (2010), 191-220. doi: 10.1007/s10479-009-0515-6.

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969), Contributions to Economic Analysis, Vol. 71, North-Holland, Amsterdam, (1971), 309-361.

[7]

E. F. Fama, Efficient capital markets: II, Journal of Finance, 46 (1991), 1575-1617. doi: 10.2307/2328565.

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 33 (1993), 3-56. doi: 10.1016/0304-405X(93)90023-5.

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operations Research, 28 (2003), 1-38. doi: 10.1287/moor.28.1.1.14260.

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods, Algo Research Quarterly, 1 (1998), 17-26.

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, The Review of Economics and Statistics, 47 (1956), 13-37. doi: 10.2307/1924119.

[12]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. doi: 10.2307/2975974.

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution, Journal of Banking and Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[15]

S. A. Ross, The arbitrage theory of capital asset pricing, Journal of Economic Theory, 13 (1976), 341-360. doi: 10.1016/0022-0531(76)90046-6.

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19 (1964), 425-442. doi: 10.2307/2977928.

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Operations Research, 57 (2009), 1155-1168. doi: 10.1287/opre.1080.0684.

show all references

References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[2]

T. S. Beder, VAR: Seductive but dangerous, Financial Analysts Journal, 51 (1995), 12-24. doi: 10.2469/faj.v51.n5.1932.

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations Research Letter, 25 (1999), 1-13. doi: 10.1016/S0167-6377(99)00016-4.

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556. doi: 10.1287/opre.51.4.543.16101.

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance, Annals of Operations Research, 176 (2010), 191-220. doi: 10.1007/s10479-009-0515-6.

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969), Contributions to Economic Analysis, Vol. 71, North-Holland, Amsterdam, (1971), 309-361.

[7]

E. F. Fama, Efficient capital markets: II, Journal of Finance, 46 (1991), 1575-1617. doi: 10.2307/2328565.

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 33 (1993), 3-56. doi: 10.1016/0304-405X(93)90023-5.

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operations Research, 28 (2003), 1-38. doi: 10.1287/moor.28.1.1.14260.

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods, Algo Research Quarterly, 1 (1998), 17-26.

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, The Review of Economics and Statistics, 47 (1956), 13-37. doi: 10.2307/1924119.

[12]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. doi: 10.2307/2975974.

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution, Journal of Banking and Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[15]

S. A. Ross, The arbitrage theory of capital asset pricing, Journal of Economic Theory, 13 (1976), 341-360. doi: 10.1016/0022-0531(76)90046-6.

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19 (1964), 425-442. doi: 10.2307/2977928.

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Operations Research, 57 (2009), 1155-1168. doi: 10.1287/opre.1080.0684.

[1]

Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050

[2]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[3]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[4]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[5]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[6]

Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial and Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651

[7]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[8]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[9]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems and Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[10]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial and Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[11]

Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 513-535. doi: 10.3934/naco.2021019

[12]

Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124

[13]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[14]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[15]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[16]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[17]

Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041

[18]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[19]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[20]

Zonghan Wang, Moses Olabhele Esangbedo, Sijun Bai. Project portfolio selection based on multi-project synergy. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021177

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]