April  2012, 8(2): 343-362. doi: 10.3934/jimo.2012.8.343

Robust portfolio selection with a combined WCVaR and factor model

1. 

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Received  March 2011 Revised  August 2011 Published  April 2012

In this paper, a portfolio selection model with a combined Worst-Case Conditional Value-at-Risk (WCVaR) and Multi-Factor Model is proposed. It is shown that the probability distributions in the definition of WCVaR can be determined by specifying the mean vectors under the assumption of multivariate normal distribution with a fixed variance-covariance matrix. The WCVaR minimization problem is then reformulated as a linear programming problem. In our numerical experiments, to compare the proposed model with the traditional mean variance model, we solve the two models using the real market data and present the efficient frontiers to illustrate the difference. The comparison reveals that the WCVaR minimization model is more robust than the traditional one in a market recession period and it can be used in a long-term investment.
Citation: Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343
References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.  doi: 10.2469/faj.v51.n5.1932.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.  doi: 10.1007/s10479-009-0515-6.  Google Scholar

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.   Google Scholar

[7]

E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.  doi: 10.2307/2328565.  Google Scholar

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.  doi: 10.1016/0304-405X(93)90023-5.  Google Scholar

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17.   Google Scholar

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.  doi: 10.2307/1924119.  Google Scholar

[12]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.2307/2975974.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[15]

S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.  doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.  doi: 10.2307/2977928.  Google Scholar

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.  doi: 10.1287/opre.1080.0684.  Google Scholar

show all references

References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.  doi: 10.2469/faj.v51.n5.1932.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.  doi: 10.1007/s10479-009-0515-6.  Google Scholar

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.   Google Scholar

[7]

E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.  doi: 10.2307/2328565.  Google Scholar

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.  doi: 10.1016/0304-405X(93)90023-5.  Google Scholar

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17.   Google Scholar

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.  doi: 10.2307/1924119.  Google Scholar

[12]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.2307/2975974.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[15]

S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.  doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.  doi: 10.2307/2977928.  Google Scholar

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.  doi: 10.1287/opre.1080.0684.  Google Scholar

[1]

Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050

[2]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019021

[3]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[4]

Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial & Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651

[5]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019071

[6]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[7]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[8]

Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124

[9]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[10]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[11]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019130

[12]

Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041

[13]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[14]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019050

[15]

Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167

[16]

Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial & Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059

[17]

Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055

[18]

Zhifeng Dai, Huan Zhu, Fenghua Wen. Two nonparametric approaches to mean absolute deviation portfolio selection model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019054

[19]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094

[20]

Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial & Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]