April  2012, 8(2): 379-389. doi: 10.3934/jimo.2012.8.379

A real option approach to optimal inventory management of retail products

1. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520

2. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. 

Department of Applied Finance and Actuarial Studies and the Centre for Financial Risk, Faculty of Business and Economics, Macquarie University, Sydney, NSW 2109, Australia

4. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  March 2011 Revised  October 2011 Published  April 2012

This paper introduces a novel approach to discuss an optimal inventory level of a retail product using a real option framework. We consider stochastic models for the evolution of the demand and unit price of the product over time. The profit structure of the retailer is represented by the payoff of the real option. An actuarial approach is then used to price the option. The retailer determines an optimal inventory level of the product with a view to maximizing the net expected profit. Numerical examples will be given to illustrate the practical implementation of the proposed approach and to investigate the impacts of changes in parameters on the optimal inventory level of the product.
Citation: Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379
References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

show all references

References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

[1]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[2]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[3]

Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069

[4]

Zhijie Sasha Dong, Wei Chen, Qing Zhao, Jingquan Li. Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2018175

[5]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[6]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[7]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[8]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[9]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[10]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095

[11]

Binbin Cao, Zhongdong Xiao, Xiaojun Li. Joint decision on pricing and waste emission level in industrial symbiosis chain. Journal of Industrial & Management Optimization, 2018, 14 (1) : 135-164. doi: 10.3934/jimo.2017040

[12]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

[13]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[14]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

[15]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[16]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[17]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[18]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[19]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[20]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

[Back to Top]