April  2012, 8(2): 379-389. doi: 10.3934/jimo.2012.8.379

A real option approach to optimal inventory management of retail products

1. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520

2. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. 

Department of Applied Finance and Actuarial Studies and the Centre for Financial Risk, Faculty of Business and Economics, Macquarie University, Sydney, NSW 2109, Australia

4. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  March 2011 Revised  October 2011 Published  April 2012

This paper introduces a novel approach to discuss an optimal inventory level of a retail product using a real option framework. We consider stochastic models for the evolution of the demand and unit price of the product over time. The profit structure of the retailer is represented by the payoff of the real option. An actuarial approach is then used to price the option. The retailer determines an optimal inventory level of the product with a view to maximizing the net expected profit. Numerical examples will be given to illustrate the practical implementation of the proposed approach and to investigate the impacts of changes in parameters on the optimal inventory level of the product.
Citation: Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379
References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

show all references

References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[3]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[4]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[5]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[6]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (4)

[Back to Top]