April  2012, 8(2): 379-389. doi: 10.3934/jimo.2012.8.379

A real option approach to optimal inventory management of retail products

1. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520

2. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. 

Department of Applied Finance and Actuarial Studies and the Centre for Financial Risk, Faculty of Business and Economics, Macquarie University, Sydney, NSW 2109, Australia

4. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  March 2011 Revised  October 2011 Published  April 2012

This paper introduces a novel approach to discuss an optimal inventory level of a retail product using a real option framework. We consider stochastic models for the evolution of the demand and unit price of the product over time. The profit structure of the retailer is represented by the payoff of the real option. An actuarial approach is then used to price the option. The retailer determines an optimal inventory level of the product with a view to maximizing the net expected profit. Numerical examples will be given to illustrate the practical implementation of the proposed approach and to investigate the impacts of changes in parameters on the optimal inventory level of the product.
Citation: Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial and Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379
References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach, Journal of Financial and Quantitative Analysis, 33 (1998), 305-334. doi: 10.2307/2331098.

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems, International Journal of Production Economics, 53 (1997), 217-223. doi: 10.1016/S0925-5273(97)00114-X.

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees, Computers and Operations Research, 25 (1998), 367-377. doi: 10.1016/S0305-0548(97)00077-4.

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy, J. Ind. Manag. Optim., 5 (2009), 103-114.

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies," 3rd edition, Wiley, New York, 2000.

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options, Mathematical Finance, 14 (2004), 445-467. doi: 10.1111/j.0960-1627.2004.00199.x.

[7]

A. Damodaran, "Damodaran on Valuation," Wiley, New York, 1994.

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty," Princeton University Press, Princeton, NJ, 1994.

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment, Journal of Applied Probability, 15 (1978), 654-659. doi: 10.2307/3213131.

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments, Journal of Operations Management, 18 (1999), 61-73. doi: 10.1016/S0272-6963(99)00012-1.

[11]

V. Henderson, Valuing the option to invest in an incomplete market, Mathematics and Financial Economics, 1 (2007), 103-128. doi: 10.1007/s11579-007-0005-z.

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D, Management Science, 47 (2001), 85-101. doi: 10.1287/mnsc.47.1.85.10661.

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company, Financial Analysts Journal, 56 (2000), 76-84. doi: 10.2469/faj.v56.n3.2362.

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain, Management Science, 46 (2000), 626-643 doi: 10.1287/mnsc.46.5.626.12047.

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions, Management Science, 36 (1990), 724-738. doi: 10.1287/mnsc.36.6.724.

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies, Financial Analysts Journal, 56 (2000), 62-75. doi: 10.2469/faj.v56.n3.2361.

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence, Management Science, 46 (2000), 404-420. doi: 10.1287/mnsc.46.3.404.12070.

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform, J. Ind. Manag. Optim., 2 (2006), 177-197. doi: 10.3934/jimo.2006.2.177.

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk, Mathematical Methods of Operations Research, 68 (2008), 97-123. doi: 10.1007/s00186-007-0190-9.

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium, J. Ind. Manag. Optim., 4 (2008), 843-859. doi: 10.3934/jimo.2008.4.843.

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains, J. Ind. Manag. Optim., 4 (2008), 81-94.

show all references

References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach, Journal of Financial and Quantitative Analysis, 33 (1998), 305-334. doi: 10.2307/2331098.

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems, International Journal of Production Economics, 53 (1997), 217-223. doi: 10.1016/S0925-5273(97)00114-X.

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees, Computers and Operations Research, 25 (1998), 367-377. doi: 10.1016/S0305-0548(97)00077-4.

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy, J. Ind. Manag. Optim., 5 (2009), 103-114.

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies," 3rd edition, Wiley, New York, 2000.

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options, Mathematical Finance, 14 (2004), 445-467. doi: 10.1111/j.0960-1627.2004.00199.x.

[7]

A. Damodaran, "Damodaran on Valuation," Wiley, New York, 1994.

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty," Princeton University Press, Princeton, NJ, 1994.

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment, Journal of Applied Probability, 15 (1978), 654-659. doi: 10.2307/3213131.

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments, Journal of Operations Management, 18 (1999), 61-73. doi: 10.1016/S0272-6963(99)00012-1.

[11]

V. Henderson, Valuing the option to invest in an incomplete market, Mathematics and Financial Economics, 1 (2007), 103-128. doi: 10.1007/s11579-007-0005-z.

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D, Management Science, 47 (2001), 85-101. doi: 10.1287/mnsc.47.1.85.10661.

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company, Financial Analysts Journal, 56 (2000), 76-84. doi: 10.2469/faj.v56.n3.2362.

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain, Management Science, 46 (2000), 626-643 doi: 10.1287/mnsc.46.5.626.12047.

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions, Management Science, 36 (1990), 724-738. doi: 10.1287/mnsc.36.6.724.

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies, Financial Analysts Journal, 56 (2000), 62-75. doi: 10.2469/faj.v56.n3.2361.

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence, Management Science, 46 (2000), 404-420. doi: 10.1287/mnsc.46.3.404.12070.

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform, J. Ind. Manag. Optim., 2 (2006), 177-197. doi: 10.3934/jimo.2006.2.177.

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk, Mathematical Methods of Operations Research, 68 (2008), 97-123. doi: 10.1007/s00186-007-0190-9.

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium, J. Ind. Manag. Optim., 4 (2008), 843-859. doi: 10.3934/jimo.2008.4.843.

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains, J. Ind. Manag. Optim., 4 (2008), 81-94.

[1]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[2]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial and Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[3]

Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069

[4]

Zhijie Sasha Dong, Wei Chen, Qing Zhao, Jingquan Li. Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects. Journal of Industrial and Management Optimization, 2020, 16 (2) : 725-739. doi: 10.3934/jimo.2018175

[5]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3269-3295. doi: 10.3934/jimo.2020118

[6]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1613-1633. doi: 10.3934/jimo.2019020

[7]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[8]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[9]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial and Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[10]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[11]

Chandan Pathak, Saswati Mukherjee, Santanu Kumar Ghosh, Sudhansu Khanra. A three echelon supply chain model with stochastic demand dependent on price, quality and energy reduction. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2959-2975. doi: 10.3934/jimo.2021098

[12]

Antonio Attalienti, Michele Bufalo. Expected vs. real transaction costs in European option pricing. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022063

[13]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial and Management Optimization, 2022, 18 (2) : 843-872. doi: 10.3934/jimo.2020181

[14]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[15]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2022, 18 (1) : 541-560. doi: 10.3934/jimo.2020167

[16]

Binbin Cao, Zhongdong Xiao, Xiaojun Li. Joint decision on pricing and waste emission level in industrial symbiosis chain. Journal of Industrial and Management Optimization, 2018, 14 (1) : 135-164. doi: 10.3934/jimo.2017040

[17]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3083-3103. doi: 10.3934/jimo.2019095

[18]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[19]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial and Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[20]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (4)

[Back to Top]