April  2012, 8(2): 391-410. doi: 10.3934/jimo.2012.8.391

The dependence of assets and default threshold with thinning-dependence structure

1. 

Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China, China

Received  October 2010 Revised  October 2011 Published  April 2012

In this paper, we model the value of a firm and a default threshold using two dependent jump-diffusion processes. We give the explicit solutions for the Laplace transform of the first passage time and the expected discounted ratio of the firm value to the default threshold at default, and show the impact of dependent jumps of the firm value and the default threshold on the default probabilities and the spreads of corporate defaultable bonds.
Citation: Yinghui Dong, Guojing Wang. The dependence of assets and default threshold with thinning-dependence structure. Journal of Industrial & Management Optimization, 2012, 8 (2) : 391-410. doi: 10.3934/jimo.2012.8.391
References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.  doi: 10.2307/2326607.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.  doi: 10.1016/j.orl.2009.01.002.  Google Scholar

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.  doi: 10.1111/j.1467-9965.2009.00375.x.  Google Scholar

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.  doi: 10.1016/j.insmatheco.2009.12.004.  Google Scholar

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.  doi: 10.1111/0022-1082.00395.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.  doi: 10.1111/1468-0262.00208.  Google Scholar

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.  doi: 10.1016/0167-6687(91)90023-Q.  Google Scholar

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.  doi: 10.1016/S0167-6687(98)00014-6.  Google Scholar

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.   Google Scholar

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.  doi: 10.3905/jod.2004.434534.  Google Scholar

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.  doi: 10.1086/322893.  Google Scholar

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.  doi: 10.1007/s007800100058.  Google Scholar

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).   Google Scholar

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).   Google Scholar

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.  doi: 10.2307/2329239.  Google Scholar

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.  doi: 10.1086/505241.  Google Scholar

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.  doi: 10.1287/mnsc.48.8.1086.166.  Google Scholar

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.   Google Scholar

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.   Google Scholar

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).   Google Scholar

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.  doi: 10.2307/2329184.  Google Scholar

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.  doi: 10.2307/2329229.  Google Scholar

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.  doi: 10.1007/BF01531333.  Google Scholar

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.  doi: 10.2307/2978814.  Google Scholar

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.  doi: 10.1007/s10436-006-0062-y.  Google Scholar

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).   Google Scholar

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).   Google Scholar

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.  doi: 10.1080/13504860701718281.  Google Scholar

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.  doi: 10.1016/j.insmatheco.2005.04.004.  Google Scholar

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.  doi: 10.1016/j.cam.2009.09.014.  Google Scholar

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.  doi: 10.1016/S0378-4266(00)00168-0.  Google Scholar

show all references

References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.  doi: 10.2307/2326607.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.  doi: 10.1016/j.orl.2009.01.002.  Google Scholar

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.  doi: 10.1111/j.1467-9965.2009.00375.x.  Google Scholar

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.  doi: 10.1016/j.insmatheco.2009.12.004.  Google Scholar

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.  doi: 10.1111/0022-1082.00395.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.  doi: 10.1111/1468-0262.00208.  Google Scholar

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.  doi: 10.1016/0167-6687(91)90023-Q.  Google Scholar

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.  doi: 10.1016/S0167-6687(98)00014-6.  Google Scholar

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.   Google Scholar

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.  doi: 10.3905/jod.2004.434534.  Google Scholar

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.  doi: 10.1086/322893.  Google Scholar

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.  doi: 10.1007/s007800100058.  Google Scholar

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).   Google Scholar

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).   Google Scholar

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.  doi: 10.2307/2329239.  Google Scholar

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.  doi: 10.1086/505241.  Google Scholar

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.  doi: 10.1287/mnsc.48.8.1086.166.  Google Scholar

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.   Google Scholar

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.   Google Scholar

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).   Google Scholar

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.  doi: 10.2307/2329184.  Google Scholar

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.  doi: 10.2307/2329229.  Google Scholar

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.  doi: 10.1007/BF01531333.  Google Scholar

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.  doi: 10.2307/2978814.  Google Scholar

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.  doi: 10.1007/s10436-006-0062-y.  Google Scholar

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).   Google Scholar

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).   Google Scholar

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.  doi: 10.1080/13504860701718281.  Google Scholar

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.  doi: 10.1016/j.insmatheco.2005.04.004.  Google Scholar

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.  doi: 10.1016/j.cam.2009.09.014.  Google Scholar

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.  doi: 10.1016/S0378-4266(00)00168-0.  Google Scholar

[1]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[2]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[3]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[4]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[5]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[6]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[7]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[8]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[9]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[10]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[11]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[12]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[13]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[14]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[15]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[18]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]