Citation: |
[1] |
M. Avriel and A. C. Williams, Complementary geometric programming, SIAM Journal on Applied Mathematics, 19 (1970), 125-141.doi: 10.1137/0119011. |
[2] |
D. A. Babayev, Piece-wise linear approximation of functions of two variables, Journal of Heuristics, 2 (1997), 313-320.doi: 10.1007/BF00132502. |
[3] |
K. M. Björk, P. O. Lindberg and T. Westerlund, Some convexifications in global optimization of problems containing signomial terms, Computers and Chemical Engineering, 27 (2003), 669-679. |
[4] |
K. M. Björk and T. Westerlund, Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption, Computers and Chemical Engineering, 26 (2002), 1581-1593.doi: 10.1016/S0098-1354(02)00129-1. |
[5] |
G. E. Blau and D. J. Wilde, Generalized polynomial programming, The Canadian Journal of Chemical Engineering, 47 (1969), 317-326.doi: 10.1002/cjce.5450470401. |
[6] |
S. P. Boyd, S.-J. Kim, D. D. Patil and M. A. Horowitz, Digital circuit optimization via geometric programming, Operations Research, 53 (2005), 899-932.doi: 10.1287/opre.1050.0254. |
[7] |
H. Cheng, S. C. Fang and J. E. Lavery, A geometric programming framework for univariate cubic L1 smoothing splines, Annals of Operations Research, 133 (2005), 229-248.doi: 10.1007/s10479-004-5035-9. |
[8] |
M. Chiang, "Geometric Programming for Communication Systems," Now Publishers, Inc., Boston, 2005. |
[9] |
R. J. Duffin, Linearizing geometric programming, SIAM Review, 12 (1970), 211-227.doi: 10.1137/1012043. |
[10] |
R. J. Duffin and E. L. Peterson, Duality theory for geometric programming, SIAM Journal on Applied Mathematics, 14 (1966), 1307-1349.doi: 10.1137/0114105. |
[11] |
R. J. Duffin and E. L. Peterson, Geometric programming with signomials, Journal of Optimization Theory and Applications, 11 (1973), 3-35.doi: 10.1007/BF00934288. |
[12] |
J. G. Ecker, Geometric programming: Methods, computation and application, SIAM Review, 22 (1980), 338-362.doi: 10.1137/1022058. |
[13] |
C. A. Floudas, "Nonlinear and Mixed-Integer Optimization-Fundamentals and Applications," Oxford University Press, Chapter 7, 1995. |
[14] |
C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, "Handbook of Test Problems in Local and Global Optimization," Academic Publishers, Boston, (1999), 85-105. |
[15] |
C. A. Floudas, "Deterministic Global Optimization: Theory, Methods and Application," Kluwer Academic Publishers, Boston, (2000), 257-306. |
[16] |
L. J. Hellinckx and M. J. Rijckaert, Minimization of capital investment for batch processes, Industrial & Engineering Chemistry Process Design and Development, 10 (1971), 422-423.doi: 10.1021/i260039a026. |
[17] |
A. Kochenberger, R. E. D. Woolsey and B. A. McCarl, On the solution of geometric programs via separable programming, Operations Research, 24 (1973), 285-294.doi: 10.1057/jors.1973.45. |
[18] |
LINGO, Release 12, Lindo System Inc., Chicago,, 2010. Available from: \url{http://www.lindo.com/}., (2010).
|
[19] |
H.-L. Li and J.-F. Tsai, Treating free variables in generalized geometric global optimization programs, Journal of Global Optimization, 33 (2005), 1-13.doi: 10.1007/s10898-005-2098-3. |
[20] |
H.-L. Li and H.-C. Lu, Global optimization for generalized geometric programs with mixed free-sign variables, Operations Research, 57 (2009), 701-713.doi: 10.1287/opre.1080.0586. |
[21] |
H.-L. Li, H.-C. Lu, C.-H. Huang and N.-Z. Hu, A superior representation method for piecewise linear functions, INFORMS Journal on Computing, 21 (2009), 314-321.doi: 10.1287/ijoc.1080.0294. |
[22] |
P. O. Lindberg, "Power Convex Functions: Generalized Concavity in Optimization and Economics," Academic Publishers, Boston, (1981), 153-168. |
[23] |
M. Padberg, Approximating separable nonlinear functions via mixed zero-one programs, Operations Research Letters, 27 (2000), 1-5.doi: 10.1016/S0167-6377(00)00028-6. |
[24] |
A. Paoluzzi, "Geometric Programming for Computer Aided Design," John Wiley & Sons, Inc., Hoboken, 2003.doi: 10.1002/0470013885. |
[25] |
P. M. Pardalos and E. Romeijn, Global optimization: Software, test problem, and applications, in "Handbook of Global Optimization," Vol. 2, Chapter 15, |
[26] |
L. D. Pascual and A. Ben-Israel, Constrained maximization of posynomials by geometric programming, Journal of Optimization Theorem and Application, 5 (1970), 73-80.doi: 10.1007/BF00928296. |
[27] |
U. Passy, Generalized weighted mean programming, SIAM Journal on Applied Mathematics, 20 (1971), 763-778.doi: 10.1137/0120075. |
[28] |
U. Passy and D. J. Wilde, Generalized polynomial optimizations, SIAM Journal on Applied Mathematics, 15 (1967), 1344-1356.doi: 10.1137/0115117. |
[29] |
I. Quesada and I. Grossmann, Global optimization algorithm for heat exchanger networks, Industrial and Engineering Chemical Research, 32 (1993), 487-499.doi: 10.1021/ie00015a012. |
[30] |
C. D. Maranas and C. A. Floudas, Global optimization in generalized geometric programming, Computer and Chemical Engineering, 21 (1997), 351-370.doi: 10.1016/S0098-1354(96)00282-7. |
[31] |
R. Pörn, K. M. Björk and T. Westerlund, Global solution of optimization problems with signomial parts, Discrete Optimization, 5 (2008), 108-120.doi: 10.1016/j.disopt.2007.11.005. |
[32] |
H. E. Salomone and O. A. Iribarren, Posynomial modeling of batch plants: A procedure to include process decision variables, Computer and Chemical Engineering, 16 (1992), 173-184.doi: 10.1016/0098-1354(92)85004-R. |
[33] |
E. Sandgren, Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design, 112 (1990), 223-229.doi: 10.1115/1.2912596. |