• Previous Article
    A Stackelberg game management model of the urban public transport
  • JIMO Home
  • This Issue
  • Next Article
    On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem
April  2012, 8(2): 493-505. doi: 10.3934/jimo.2012.8.493

Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive

1. 

School of Mathematical Sciences and Computing Technology, Central South University, Hunan Changsha, 410083, China

2. 

School of Mathematics Sciences and Computing Technology, Central South University, Hunan Changsha, 410083

Received  February 2011 Revised  December 2011 Published  April 2012

In this paper, a polymorphic uncertain nonlinear programming (PUNP) model is constructed to formulate the problem of maximizing the V-belt's fatigue life according to the practical engineering design conditions. The model is converted into an equivalent interval programming only involved with interval parameters for any given degree of membership and confidence level. Then, a deterministic equivalent formulation (DEF) for the original model is obtained based on the concept of possibility degree for the order of two interval numbers. An algorithm, called sampling based algorithm, is developed to find a robust optimal design scheme for maximizing the fatigue life of the V-belt. Case study is employed to demonstrate the validity and the practicability of the constructed model and the algorithm.
Citation: Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial and Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493
References:
[1]

C. Carlsson and R. Fullér, "Fuzzy Reasoning in Decision Making and Optimization," Physica-Verlag, Heidelberg, 2002.

[2]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Mathematical Programming, 117 (2009), 51-80. doi: 10.1007/s10107-007-0163-z.

[3]

G. Facchinetti, R. G. Ricci and S. Muzzioli, Note on ranking fuzzy triangular numbers, International Journal of Intelligent Systems, 13 (1998), 613-622.

[4]

B. Q. Hu and S. Wang, A novel approach in uncertain programming. I: New arithmetic and order relation for interval numbers, Journal of Industrial and Management Optimization, 2 (2006), 351-371. doi: 10.3934/jimo.2006.2.351.

[5]

C. Jiang, "Theories and Algorithms of Uncertain Optimization Based on Interval,'' Ph.D thesis, Hunan University, Changsha, 2008.

[6]

C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European Journal of Operational Research, 188 (2008), 1-13. doi: 10.1016/j.ejor.2007.03.031.

[7]

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems, Applied Mathematical Modelling, 35 (2011), 817-823. doi: 10.1016/j.apm.2010.07.037.

[8]

J. Li, J. P. Xu and M. S. Gen, A class of multiobjective linear programming model with fuzzy random coefficients, Mathematical and Computer Modelling, 44 (2006), 1097-1113. doi: 10.1016/j.mcm.2006.03.013.

[9]

T. F. Liang and H. W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method, Journal of Industrial and Management Optimization, 7 (2011), 365-383. doi: 10.3934/jimo.2011.7.365.

[10]

Q. G. Lin, G. H. Huang, B. Bass and X. S. Qin, IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty, Energy Policy, 37 (2009), 868-878. doi: 10.1016/j.enpol.2008.10.038.

[11]

Y. D. Liu, Calculation of V-belt life, Journal of Hubei Automotive Industries Institute, 21 (1997), 1-4.

[12]

S. M. Luo, Y. D. Yu and Y. F. Guo, et al., "Theory on Belt Transmission and New Types of Belt Transmission," National Defence Industry Press, Beijing, 2006.

[13]

X. S. Qin, G. H. Huang, G. M. Zeng, A. Chakma, and Y. F. Huang, An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty, European Journal of Operational Research, 180 (2007), 1331-1357. doi: 10.1016/j.ejor.2006.03.053.

[14]

Z. Ren and S. Glode, Computational service life estimation of contacting mechanical elements in regard to pitting, Computers & Structures, 80 (2002), 2209-2216. doi: 10.1016/S0045-7949(02)00263-8.

[15]

M. F. Spotts, "Design of Machine Elements," 6th edition, Englewood Prentice-Hall Inc., Cliffs, 1985.

[16]

Z. Wan, A. Y. Hao, F. Z. Meng and C. M. Hu, Hybrid method for a class of stochastic bi-criteria optimization problems, Journal of Inequalities and Applications, 2010. doi: 10.1155/2010/745162.

[17]

Z. Wan, F. Z. Meng, A. Y. Hao and Y. L. Wang, Fuzzy and stochastic parameters-based prediction method for the components of alkali in the sintering process of aluminium, Fuzzy System and Mathematics, 25 (2011), 163-167.

[18]

Z. Wan, K. L. Teo, L. S. Kong and C. Yang, A class of mix design problems: Formulation, solution methods and applications, ANZIAM Journal, 50 (2009), 455-474. doi: 10.1017/S1446181109000145.

[19]

M. Z. Wang, M. Montaz Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks, Journal of Industrial and Management Optimization, 7 (2011), 317-345. doi: 10.3934/jimo.2011.7.317.

[20]

Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application, Journal of Systems Engineering, 18 (2003), 67-70.

[21]

H. B. Yan, S. C Yuan and W. X. Ji, Design optimization of V-belt applying genetic algorithm and MATLAB toolbox, Machinery, 35 (2008), 23-25.

[22]

C. S. Yang, Design optimization of belt transmission by intelligent algorithm, in "2009 International Conference on Computational Intelligence and Software Engineering" (CiSE 2009), (2009), 1-4.

[23]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design method for maximizing the capacity of V-belt drive, SCINCE CHINA: Technological Sciences, 54 (2011), 140-147. doi: 10.1007/s11431-010-4193-z.

[24]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design of V-belt fatigue life, China Mechanical Engineering, 22 (2011), 403-407.

show all references

References:
[1]

C. Carlsson and R. Fullér, "Fuzzy Reasoning in Decision Making and Optimization," Physica-Verlag, Heidelberg, 2002.

[2]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Mathematical Programming, 117 (2009), 51-80. doi: 10.1007/s10107-007-0163-z.

[3]

G. Facchinetti, R. G. Ricci and S. Muzzioli, Note on ranking fuzzy triangular numbers, International Journal of Intelligent Systems, 13 (1998), 613-622.

[4]

B. Q. Hu and S. Wang, A novel approach in uncertain programming. I: New arithmetic and order relation for interval numbers, Journal of Industrial and Management Optimization, 2 (2006), 351-371. doi: 10.3934/jimo.2006.2.351.

[5]

C. Jiang, "Theories and Algorithms of Uncertain Optimization Based on Interval,'' Ph.D thesis, Hunan University, Changsha, 2008.

[6]

C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European Journal of Operational Research, 188 (2008), 1-13. doi: 10.1016/j.ejor.2007.03.031.

[7]

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems, Applied Mathematical Modelling, 35 (2011), 817-823. doi: 10.1016/j.apm.2010.07.037.

[8]

J. Li, J. P. Xu and M. S. Gen, A class of multiobjective linear programming model with fuzzy random coefficients, Mathematical and Computer Modelling, 44 (2006), 1097-1113. doi: 10.1016/j.mcm.2006.03.013.

[9]

T. F. Liang and H. W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method, Journal of Industrial and Management Optimization, 7 (2011), 365-383. doi: 10.3934/jimo.2011.7.365.

[10]

Q. G. Lin, G. H. Huang, B. Bass and X. S. Qin, IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty, Energy Policy, 37 (2009), 868-878. doi: 10.1016/j.enpol.2008.10.038.

[11]

Y. D. Liu, Calculation of V-belt life, Journal of Hubei Automotive Industries Institute, 21 (1997), 1-4.

[12]

S. M. Luo, Y. D. Yu and Y. F. Guo, et al., "Theory on Belt Transmission and New Types of Belt Transmission," National Defence Industry Press, Beijing, 2006.

[13]

X. S. Qin, G. H. Huang, G. M. Zeng, A. Chakma, and Y. F. Huang, An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty, European Journal of Operational Research, 180 (2007), 1331-1357. doi: 10.1016/j.ejor.2006.03.053.

[14]

Z. Ren and S. Glode, Computational service life estimation of contacting mechanical elements in regard to pitting, Computers & Structures, 80 (2002), 2209-2216. doi: 10.1016/S0045-7949(02)00263-8.

[15]

M. F. Spotts, "Design of Machine Elements," 6th edition, Englewood Prentice-Hall Inc., Cliffs, 1985.

[16]

Z. Wan, A. Y. Hao, F. Z. Meng and C. M. Hu, Hybrid method for a class of stochastic bi-criteria optimization problems, Journal of Inequalities and Applications, 2010. doi: 10.1155/2010/745162.

[17]

Z. Wan, F. Z. Meng, A. Y. Hao and Y. L. Wang, Fuzzy and stochastic parameters-based prediction method for the components of alkali in the sintering process of aluminium, Fuzzy System and Mathematics, 25 (2011), 163-167.

[18]

Z. Wan, K. L. Teo, L. S. Kong and C. Yang, A class of mix design problems: Formulation, solution methods and applications, ANZIAM Journal, 50 (2009), 455-474. doi: 10.1017/S1446181109000145.

[19]

M. Z. Wang, M. Montaz Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks, Journal of Industrial and Management Optimization, 7 (2011), 317-345. doi: 10.3934/jimo.2011.7.317.

[20]

Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application, Journal of Systems Engineering, 18 (2003), 67-70.

[21]

H. B. Yan, S. C Yuan and W. X. Ji, Design optimization of V-belt applying genetic algorithm and MATLAB toolbox, Machinery, 35 (2008), 23-25.

[22]

C. S. Yang, Design optimization of belt transmission by intelligent algorithm, in "2009 International Conference on Computational Intelligence and Software Engineering" (CiSE 2009), (2009), 1-4.

[23]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design method for maximizing the capacity of V-belt drive, SCINCE CHINA: Technological Sciences, 54 (2011), 140-147. doi: 10.1007/s11431-010-4193-z.

[24]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design of V-belt fatigue life, China Mechanical Engineering, 22 (2011), 403-407.

[1]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[2]

Arman Hamedirostami, Alireza Goli, Yousef Gholipour-Kanani. Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021105

[3]

Chunfeng Liu, Yuanyuan Liu, Jufeng Wang. A revised imperialist competition algorithm for cellular manufacturing optimization based on product line design. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021175

[4]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[5]

Xiaohu Qian, Min Huang, Wai-Ki Ching, Loo Hay Lee, Xingwei Wang. Mechanism design in project procurement auctions with cost uncertainty and failure risk. Journal of Industrial and Management Optimization, 2019, 15 (1) : 131-157. doi: 10.3934/jimo.2018036

[6]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial and Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[7]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[8]

Xueling Zhou, Bingo Wing-Kuen Ling, Hai Huyen Dam, Kok-Lay Teo. Optimal design of window functions for filter window bank. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1119-1145. doi: 10.3934/jimo.2020014

[9]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[10]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[11]

Jesús Fabián López Pérez, Tahir Ekin, Jesus A. Jimenez, Francis A. Méndez Mediavilla. Risk-balanced territory design optimization for a Micro finance institution. Journal of Industrial and Management Optimization, 2020, 16 (2) : 741-758. doi: 10.3934/jimo.2018176

[12]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[13]

Yingjing Shi, Rui Li, Honglei Xu. Control augmentation design of UAVs based on deviation modification of aerodynamic focus. Journal of Industrial and Management Optimization, 2015, 11 (1) : 231-240. doi: 10.3934/jimo.2015.11.231

[14]

Robert Ebihart Msigwa, Yue Lu, Xiantao Xiao, Liwei Zhang. A perturbation-based approach for continuous network design problem with emissions. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 135-149. doi: 10.3934/naco.2015.5.135

[15]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[16]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[17]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial and Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]