Citation: |
[1] |
K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22 (1954), 265-290.doi: 10.2307/1907353. |
[2] |
D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods," Athena Scientific, Belmont, Mass., 1996. |
[3] |
B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function, Mathematical Programming, 88 (2000), 211-216.doi: 10.1007/PL00011375. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley & Sons, New York, 1983. |
[5] |
G. Debreu, Definite and semidefinite quadratic forms, Econometrica, 20 (1952), 295-300.doi: 10.2307/1907852. |
[6] |
F. Facchinei, A. Fischer and V. Piccialli, Generalized Nash equilibrium problems and Newton methods, Mathematical Programming, 117 (2009), 163-194.doi: 10.1007/s10107-007-0160-2. |
[7] |
F. Facchinei and C. Kanzow, Penalty methods for the solution of generalized nash equilibrium problems, SIAM Journal on Optimization, 20 (2010), 2228-2253.doi: 10.1137/090749499. |
[8] |
F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Annals of Operations Research, 175 (2010), 177-211.doi: 10.1007/s10479-009-0653-x. |
[9] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report 2008-007, Department of Applied Mathematics and Physics, Kyoto University, July 2008. |
[10] |
A. Heusinger and C. Kanzow, Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type funcitons, Computational Optimization and Applications, 43 (2009), 353-377.doi: 10.1007/s10589-007-9145-6. |
[11] |
A. Kesselman, S. Leonardi and V. Bonifaci, Game-theoretic analysis of internet switching with selfish users, Lecture Notes in Computer Science, 3828 (2005), 236-245.doi: 10.1007/11600930_23. |
[12] |
R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM Journal on Control and Optimization, 15 (1977), 959-972.doi: 10.1137/0315061. |
[13] |
L. W. McKenzie, On the existence of a general equilibrium for a competitive market, Econometrica, 27 (1959), 54-71.doi: 10.2307/1907777. |
[14] |
J. F. Nash, Jr., Equilibrium points in $n$-person games, Proceedings of the National Academy of Sciences of the USA, 36 (1950), 48-49.doi: 10.1073/pnas.36.1.48. |
[15] |
J. F. Nash, Non-cooperative games, Annals of Mathematics (2), 54 (1951), 286-295.doi: 10.2307/1969529. |
[16] |
J. V. Neumann, Zur theorie der gesellschaftsspiele, Mathematische Annalen, 100 (1928), 295-320.doi: 10.1007/BF01448847. |
[17] |
J. V. Neumann and O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, Princeton, 1953. |
[18] |
J.-S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Computational Management Science, 2 (2005), 21-56.doi: 10.1007/s10287-004-0010-0. |
[19] |
L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[20] |
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Mathematical Programming, 87 (2000), 1-35. |
[21] |
J. B. Rosen, Existence and uniqueness of equilibrium points for concave $n$-person games, Econometrica, 33 (1965), 520-534.doi: 10.2307/1911749. |
[22] |
D. Sun, The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications, Mathematics of Operations Research, 31 (2006), 761-776.doi: 10.1287/moor.1060.0195. |
[23] |
J. Sun, D. Sun and L. Qi, A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems, SIAM Journal on Optimization, 14 (2004), 783-806.doi: 10.1137/S1052623400379620. |