July  2012, 8(3): 565-575. doi: 10.3934/jimo.2012.8.565

A Max-Min clustering method for $k$-means algorithm of data clustering

1. 

School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

2. 

School of Software Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

3. 

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Received  March 2011 Revised  November 2011 Published  June 2012

As it is known that the performance of the $k$-means algorithm for data clustering largely depends on the choice of the Max-Min centers, and the algorithm generally uses random procedures to get them. In order to improve the efficiency of the $k$-means algorithm, a good selection method of clustering starting centers is proposed in this paper. The proposed algorithm determines a Max-Min scale for each cluster of patterns, and calculate Max-Min clustering centers according to the norm of the points. Experiments results show that the proposed algorithm provides good performance of clustering.
Citation: Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565
References:
[1]

V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets,, Pattern Recognition, 34 (2001), 2561.

[2]

Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on K-means algorithm for optimal clustering in $R^N$,, Information Sciences, 146 (2002), 221.

[3]

Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: K-means clustering or non-negative matrix factorization,, NeuroImage, 31 (2006), 185.

[4]

Paul S. Bradley and Usama M. Fayyad, Refining max-min points for K-means clustering,, in, (1998), 91.

[5]

P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization,, in, (1996), 368.

[6]

R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition,, Wiley-Interscience, (2001).

[7]

David J. Hand and Wojtek J. Krzanowski, Optimising k-means clustering results with standard software packages,, Computational Statistics & Data Analysis, 49 (2005), 969.

[8]

A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data,", Prentice Hall Advanced Reference Series, (1988).

[9]

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for k-means clustering,, Computational Geometry, 28 (2004), 89.

[10]

Shehroz S. Khan and Amir Ahmad, Cluster center max-minization algorithm for K-means clustering,, Pattern Recognition Letters, 25 (2004), 1293. doi: 10.1016/j.patrec.2004.04.007.

[11]

R. J. Kuo, H. S. Wang, Tung-Lai Hu and S. H. Chou, Application of ant K-means on clustering analysis,, Computers & Mathematics with Applications, 50 (2005), 1709.

[12]

Youssef M. Marzouk and Ahmed F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations,, Journal of Computational Physics, 207 (2005), 493.

[13]

Boris Mirkin, Clustering algorithms: A review,, in, (1996), 109.

[14]

Boris Mirkin, K-means clustering,, in, (2005), 75.

[15]

Boris Mirkin, Concept learning and feature selection based on square-error clustering,, Machine Learning, 35 (1999), 25.

[16]

D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases,", University of California, (1998).

[17]

Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering,, Journal of Structural Geology, 28 (2006), 991.

[18]

Georg Peters, Some refinements of rough k-means clustering,, Pattern Recognition, 39 (2006), 1481.

[19]

S. Z. Selim and M. A. Ismail, K-means type algorithms: A generalized convergence theorem and characterization of local optimality,, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81.

[20]

Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM),, Chinese Journal Of Computers, 28 (2005), 9.

[21]

Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification,, Lecture Note in Artificial Intelligence, 3584 (2005), 157.

[22]

Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification,, Journal of Industrial Management and Optimization, 3 (2007), 529.

show all references

References:
[1]

V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets,, Pattern Recognition, 34 (2001), 2561.

[2]

Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on K-means algorithm for optimal clustering in $R^N$,, Information Sciences, 146 (2002), 221.

[3]

Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: K-means clustering or non-negative matrix factorization,, NeuroImage, 31 (2006), 185.

[4]

Paul S. Bradley and Usama M. Fayyad, Refining max-min points for K-means clustering,, in, (1998), 91.

[5]

P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization,, in, (1996), 368.

[6]

R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition,, Wiley-Interscience, (2001).

[7]

David J. Hand and Wojtek J. Krzanowski, Optimising k-means clustering results with standard software packages,, Computational Statistics & Data Analysis, 49 (2005), 969.

[8]

A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data,", Prentice Hall Advanced Reference Series, (1988).

[9]

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for k-means clustering,, Computational Geometry, 28 (2004), 89.

[10]

Shehroz S. Khan and Amir Ahmad, Cluster center max-minization algorithm for K-means clustering,, Pattern Recognition Letters, 25 (2004), 1293. doi: 10.1016/j.patrec.2004.04.007.

[11]

R. J. Kuo, H. S. Wang, Tung-Lai Hu and S. H. Chou, Application of ant K-means on clustering analysis,, Computers & Mathematics with Applications, 50 (2005), 1709.

[12]

Youssef M. Marzouk and Ahmed F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations,, Journal of Computational Physics, 207 (2005), 493.

[13]

Boris Mirkin, Clustering algorithms: A review,, in, (1996), 109.

[14]

Boris Mirkin, K-means clustering,, in, (2005), 75.

[15]

Boris Mirkin, Concept learning and feature selection based on square-error clustering,, Machine Learning, 35 (1999), 25.

[16]

D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases,", University of California, (1998).

[17]

Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering,, Journal of Structural Geology, 28 (2006), 991.

[18]

Georg Peters, Some refinements of rough k-means clustering,, Pattern Recognition, 39 (2006), 1481.

[19]

S. Z. Selim and M. A. Ismail, K-means type algorithms: A generalized convergence theorem and characterization of local optimality,, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81.

[20]

Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM),, Chinese Journal Of Computers, 28 (2005), 9.

[21]

Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification,, Lecture Note in Artificial Intelligence, 3584 (2005), 157.

[22]

Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification,, Journal of Industrial Management and Optimization, 3 (2007), 529.

[1]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[2]

Ruiqi Yang, Dachuan Xu, Yicheng Xu, Dongmei Zhang. An adaptive probabilistic algorithm for online k-center clustering. Journal of Industrial & Management Optimization, 2019, 15 (2) : 565-576. doi: 10.3934/jimo.2018057

[3]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[4]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[5]

Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407

[6]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[7]

Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial & Management Optimization, 2016, 12 (2) : 515-527. doi: 10.3934/jimo.2016.12.515

[8]

Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010

[9]

Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006

[10]

Zhen Mei. Manifold data mining helps businesses grow more effectively. Big Data & Information Analytics, 2016, 1 (2&3) : 275-276. doi: 10.3934/bdia.2016009

[11]

Sunmoo Yoon, Maria Patrao, Debbie Schauer, Jose Gutierrez. Prediction models for burden of caregivers applying data mining techniques. Big Data & Information Analytics, 2017, 2 (5) : 1-9. doi: 10.3934/bdia.2017014

[12]

Anupama N, Sudarson Jena. A novel approach using incremental under sampling for data stream mining. Big Data & Information Analytics, 2017, 2 (5) : 1-13. doi: 10.3934/bdia.2017017

[13]

Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401

[14]

Guojun Gan, Kun Chen. A soft subspace clustering algorithm with log-transformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93-109. doi: 10.3934/bdia.2016.1.93

[15]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085

[16]

Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks & Heterogeneous Media, 2014, 9 (2) : 315-334. doi: 10.3934/nhm.2014.9.315

[17]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[18]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial & Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[19]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[20]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]