July  2012, 8(3): 591-609. doi: 10.3934/jimo.2012.8.591

A neighboring extremal solution for an optimal switched impulsive control problem

1. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845, Australia

3. 

Department of Mathematics and Statistics, Curtin University, Perth 6845

Received  May 2011 Revised  November 2011 Published  June 2012

This paper presents a neighboring extremal solution for a class of optimal switched impulsive control problems with perturbations in the initial state, terminal condition and system's parameters. The sequence of mode's switching is pre-specified, and the decision variables, i.e. the switching times and parameters of the system involved, have inequality constraints. It is assumed that the active status of these constraints is unchanged with the perturbations. We derive this solution by expanding the necessary conditions for optimality to first-order and then solving the resulting multiple-point boundary-value problem by the backward sweep technique. Numerical simulations are presented to illustrate this solution method.
Citation: Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591
References:
[1]

J. T. Betts, "Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,", 2nd edition, 19 (2010). Google Scholar

[2]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control: Optimization, Estimation, and Control,", Revised printing, (1975). Google Scholar

[3]

R. Ghaemi, J. Sun and I. V. Kolmanovsky, An integrated perturbation analysis and sequential quadratic programming approach for model predictive control,, Automatica, 45 (2009), 2412. doi: 10.1016/j.automatica.2009.06.028. Google Scholar

[4]

_____, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints,, IEEE Transactions on Automatic Control, 54 (2009), 2674. doi: 10.1109/TAC.2009.2031576. Google Scholar

[5]

S. Gros, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part II. Multiple-input systems,, International Journal of Control, 82 (2009), 1193. doi: 10.1080/00207170802460032. Google Scholar

[6]

S. Gros, B. Srinivasan, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part I. Single-input systems,, International Journal of Control, 82 (2009), 1099. doi: 10.1080/00207170802460024. Google Scholar

[7]

C. Y.-F. Ho, B. W.-K. Ling, Y.-Q. Liu, P. K.-S. Tam and K.-L. Teo, Optimal PWM control of switched-capacitor DC-DC power converters via model transformation and enhancing control techniques,, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55 (2008), 1382. doi: 10.1109/TCSI.2008.916442. Google Scholar

[8]

B. Kugelmann and H. J. Pesch, New general guidance method in constrained optimal control. I. Numerical method,, Journal of Optimization Theory & Applications, 67 (1990), 421. doi: 10.1007/BF00939642. Google Scholar

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59. Google Scholar

[10]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, Journal of Optimization Theory & Applications, 98 (1998), 65. doi: 10.1023/A:1022684730236. Google Scholar

[11]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455. doi: 10.1109/TAC.2009.2029310. Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica J. IFAC, 45 (2009), 973. doi: 10.1016/j.automatica.2008.10.031. Google Scholar

[13]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253. Google Scholar

[14]

_____, Sensitivity analysis for optimal control problems subject to higher order state constraints,, Annals of Operations Research, 101 (2001), 43. doi: 10.1023/A:1010956104457. Google Scholar

[15]

H. J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. I. Neighbouring extremals,, Optimal Control Applications & Methods, 10 (1989), 129. doi: 10.1002/oca.4660100205. Google Scholar

[16]

_____, Real-time computation of feedback controls for constrained optimal control problems. II. A correction method based on multiple shooting,, Optimal Control Applications & Methods, 10 (1989), 147. doi: 10.1002/oca.4660100206. Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991). Google Scholar

[18]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435. Google Scholar

[19]

R. Yu and P. Leung, Optimal partial harvesting schedule for aquaculture operations,, Marine Resource Economics, 21 (2006), 301. Google Scholar

show all references

References:
[1]

J. T. Betts, "Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,", 2nd edition, 19 (2010). Google Scholar

[2]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control: Optimization, Estimation, and Control,", Revised printing, (1975). Google Scholar

[3]

R. Ghaemi, J. Sun and I. V. Kolmanovsky, An integrated perturbation analysis and sequential quadratic programming approach for model predictive control,, Automatica, 45 (2009), 2412. doi: 10.1016/j.automatica.2009.06.028. Google Scholar

[4]

_____, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints,, IEEE Transactions on Automatic Control, 54 (2009), 2674. doi: 10.1109/TAC.2009.2031576. Google Scholar

[5]

S. Gros, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part II. Multiple-input systems,, International Journal of Control, 82 (2009), 1193. doi: 10.1080/00207170802460032. Google Scholar

[6]

S. Gros, B. Srinivasan, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part I. Single-input systems,, International Journal of Control, 82 (2009), 1099. doi: 10.1080/00207170802460024. Google Scholar

[7]

C. Y.-F. Ho, B. W.-K. Ling, Y.-Q. Liu, P. K.-S. Tam and K.-L. Teo, Optimal PWM control of switched-capacitor DC-DC power converters via model transformation and enhancing control techniques,, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55 (2008), 1382. doi: 10.1109/TCSI.2008.916442. Google Scholar

[8]

B. Kugelmann and H. J. Pesch, New general guidance method in constrained optimal control. I. Numerical method,, Journal of Optimization Theory & Applications, 67 (1990), 421. doi: 10.1007/BF00939642. Google Scholar

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59. Google Scholar

[10]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, Journal of Optimization Theory & Applications, 98 (1998), 65. doi: 10.1023/A:1022684730236. Google Scholar

[11]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455. doi: 10.1109/TAC.2009.2029310. Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica J. IFAC, 45 (2009), 973. doi: 10.1016/j.automatica.2008.10.031. Google Scholar

[13]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253. Google Scholar

[14]

_____, Sensitivity analysis for optimal control problems subject to higher order state constraints,, Annals of Operations Research, 101 (2001), 43. doi: 10.1023/A:1010956104457. Google Scholar

[15]

H. J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. I. Neighbouring extremals,, Optimal Control Applications & Methods, 10 (1989), 129. doi: 10.1002/oca.4660100205. Google Scholar

[16]

_____, Real-time computation of feedback controls for constrained optimal control problems. II. A correction method based on multiple shooting,, Optimal Control Applications & Methods, 10 (1989), 147. doi: 10.1002/oca.4660100206. Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991). Google Scholar

[18]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435. Google Scholar

[19]

R. Yu and P. Leung, Optimal partial harvesting schedule for aquaculture operations,, Marine Resource Economics, 21 (2006), 301. Google Scholar

[1]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[2]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[3]

María Barbero-Liñán, Miguel C. Muñoz-Lecanda. Strict abnormal extremals in nonholonomic and kinematic control systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 1-17. doi: 10.3934/dcdss.2010.3.1

[4]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[5]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[6]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[7]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[8]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[9]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[10]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[11]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[12]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[13]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[14]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[15]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[16]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[17]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[18]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[19]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[20]

Luca Galbusera, Sara Pasquali, Gianni Gilioli. Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences & Engineering, 2014, 11 (2) : 257-283. doi: 10.3934/mbe.2014.11.257

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (21)

[Back to Top]