July  2012, 8(3): 591-609. doi: 10.3934/jimo.2012.8.591

A neighboring extremal solution for an optimal switched impulsive control problem

1. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845, Australia

3. 

Department of Mathematics and Statistics, Curtin University, Perth 6845

Received  May 2011 Revised  November 2011 Published  June 2012

This paper presents a neighboring extremal solution for a class of optimal switched impulsive control problems with perturbations in the initial state, terminal condition and system's parameters. The sequence of mode's switching is pre-specified, and the decision variables, i.e. the switching times and parameters of the system involved, have inequality constraints. It is assumed that the active status of these constraints is unchanged with the perturbations. We derive this solution by expanding the necessary conditions for optimality to first-order and then solving the resulting multiple-point boundary-value problem by the backward sweep technique. Numerical simulations are presented to illustrate this solution method.
Citation: Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591
References:
[1]

J. T. Betts, "Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,", 2nd edition, 19 (2010).   Google Scholar

[2]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control: Optimization, Estimation, and Control,", Revised printing, (1975).   Google Scholar

[3]

R. Ghaemi, J. Sun and I. V. Kolmanovsky, An integrated perturbation analysis and sequential quadratic programming approach for model predictive control,, Automatica, 45 (2009), 2412.  doi: 10.1016/j.automatica.2009.06.028.  Google Scholar

[4]

_____, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints,, IEEE Transactions on Automatic Control, 54 (2009), 2674.  doi: 10.1109/TAC.2009.2031576.  Google Scholar

[5]

S. Gros, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part II. Multiple-input systems,, International Journal of Control, 82 (2009), 1193.  doi: 10.1080/00207170802460032.  Google Scholar

[6]

S. Gros, B. Srinivasan, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part I. Single-input systems,, International Journal of Control, 82 (2009), 1099.  doi: 10.1080/00207170802460024.  Google Scholar

[7]

C. Y.-F. Ho, B. W.-K. Ling, Y.-Q. Liu, P. K.-S. Tam and K.-L. Teo, Optimal PWM control of switched-capacitor DC-DC power converters via model transformation and enhancing control techniques,, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55 (2008), 1382.  doi: 10.1109/TCSI.2008.916442.  Google Scholar

[8]

B. Kugelmann and H. J. Pesch, New general guidance method in constrained optimal control. I. Numerical method,, Journal of Optimization Theory & Applications, 67 (1990), 421.  doi: 10.1007/BF00939642.  Google Scholar

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.   Google Scholar

[10]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, Journal of Optimization Theory & Applications, 98 (1998), 65.  doi: 10.1023/A:1022684730236.  Google Scholar

[11]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica J. IFAC, 45 (2009), 973.  doi: 10.1016/j.automatica.2008.10.031.  Google Scholar

[13]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.   Google Scholar

[14]

_____, Sensitivity analysis for optimal control problems subject to higher order state constraints,, Annals of Operations Research, 101 (2001), 43.  doi: 10.1023/A:1010956104457.  Google Scholar

[15]

H. J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. I. Neighbouring extremals,, Optimal Control Applications & Methods, 10 (1989), 129.  doi: 10.1002/oca.4660100205.  Google Scholar

[16]

_____, Real-time computation of feedback controls for constrained optimal control problems. II. A correction method based on multiple shooting,, Optimal Control Applications & Methods, 10 (1989), 147.  doi: 10.1002/oca.4660100206.  Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[18]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.   Google Scholar

[19]

R. Yu and P. Leung, Optimal partial harvesting schedule for aquaculture operations,, Marine Resource Economics, 21 (2006), 301.   Google Scholar

show all references

References:
[1]

J. T. Betts, "Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,", 2nd edition, 19 (2010).   Google Scholar

[2]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control: Optimization, Estimation, and Control,", Revised printing, (1975).   Google Scholar

[3]

R. Ghaemi, J. Sun and I. V. Kolmanovsky, An integrated perturbation analysis and sequential quadratic programming approach for model predictive control,, Automatica, 45 (2009), 2412.  doi: 10.1016/j.automatica.2009.06.028.  Google Scholar

[4]

_____, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints,, IEEE Transactions on Automatic Control, 54 (2009), 2674.  doi: 10.1109/TAC.2009.2031576.  Google Scholar

[5]

S. Gros, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part II. Multiple-input systems,, International Journal of Control, 82 (2009), 1193.  doi: 10.1080/00207170802460032.  Google Scholar

[6]

S. Gros, B. Srinivasan, B. Chachuat and D. Bonvin, Neighbouring-extremal control for singular dynamic optimisation problems. Part I. Single-input systems,, International Journal of Control, 82 (2009), 1099.  doi: 10.1080/00207170802460024.  Google Scholar

[7]

C. Y.-F. Ho, B. W.-K. Ling, Y.-Q. Liu, P. K.-S. Tam and K.-L. Teo, Optimal PWM control of switched-capacitor DC-DC power converters via model transformation and enhancing control techniques,, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55 (2008), 1382.  doi: 10.1109/TCSI.2008.916442.  Google Scholar

[8]

B. Kugelmann and H. J. Pesch, New general guidance method in constrained optimal control. I. Numerical method,, Journal of Optimization Theory & Applications, 67 (1990), 421.  doi: 10.1007/BF00939642.  Google Scholar

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.   Google Scholar

[10]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, Journal of Optimization Theory & Applications, 98 (1998), 65.  doi: 10.1023/A:1022684730236.  Google Scholar

[11]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica J. IFAC, 45 (2009), 973.  doi: 10.1016/j.automatica.2008.10.031.  Google Scholar

[13]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.   Google Scholar

[14]

_____, Sensitivity analysis for optimal control problems subject to higher order state constraints,, Annals of Operations Research, 101 (2001), 43.  doi: 10.1023/A:1010956104457.  Google Scholar

[15]

H. J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. I. Neighbouring extremals,, Optimal Control Applications & Methods, 10 (1989), 129.  doi: 10.1002/oca.4660100205.  Google Scholar

[16]

_____, Real-time computation of feedback controls for constrained optimal control problems. II. A correction method based on multiple shooting,, Optimal Control Applications & Methods, 10 (1989), 147.  doi: 10.1002/oca.4660100206.  Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[18]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.   Google Scholar

[19]

R. Yu and P. Leung, Optimal partial harvesting schedule for aquaculture operations,, Marine Resource Economics, 21 (2006), 301.   Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[19]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (23)

[Back to Top]