Citation: |
[1] |
P. J. Agrell and P. Bogetoft, Economic and environmental efficiency of district heating plants, Energy Policy, 33 (2005), 1351-1362.doi: 10.1016/j.enpol.2003.12.011. |
[2] |
P. J. Agrell and P. Bogetoft, Endogenous generalized weights under DEA control, Working Paper 2010/02, Louvain School of Management, Université catholique de Louvain, 2010. |
[3] |
P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 1261-1264.doi: 10.1287/mnsc.39.10.1261. |
[4] |
M. Asmild, J. C. Paradi, V. Aggarwal and C. Schaffnit, Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry, Journal of Productivity Analysis, 21 (2004), 67-89.doi: 10.1023/B:PROD.0000012453.91326.ec. |
[5] |
E. Bernroider and V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making, Computers and Operations Research, 34 (2007), 2637-2647.doi: 10.1016/j.cor.2005.10.005. |
[6] |
P. Bogetoft, Incentive efficient production frontiers: An agency perspective on DEA, Management Science, 40 (1994), 959-968.doi: 10.1287/mnsc.40.8.959. |
[7] |
A. Charnes, W. W. Cooper and E. L. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444. |
[8] |
C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector, Mathematical and Computer Modelling, 54 (2011), 2464-2470.doi: 10.1016/j.mcm.2011.06.002. |
[9] |
A. Charnes and W. W. Cooper, Programming with linear fractional functions, Naval Research Logistics Quarterly, 9 (1962), 181-186. |
[10] |
A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks, Journal of Econometrics, 40 (1990), 73-91.doi: 10.1016/0304-4076(90)90048-X. |
[11] |
A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Cone-ratio data envelopment analysis and multi-objective programming, International Journal of Systems Sciences, 20 (1989), 1099-1118.doi: 10.1080/00207728908910197. |
[12] |
W. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA, European Journal of Operational Research, 59 (1992), 319-323.doi: 10.1016/0377-2217(92)90148-3. |
[13] |
D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, Journal of the Operational Research Society, 53 (2002), 314-323.doi: 10.1057/palgrave.jors.2601253. |
[14] |
L. Friedman and Z. Sinuany-Stern, Scaling units via the canonical correlation analysis in the DEA context, European Journal of Operational Research, 100 (1997), 629-637.doi: 10.1016/S0377-2217(97)84108-2. |
[15] |
F. HosseinzadehLotfi, A. A. Noora, G. R. Jahanshahloo and M. Reshadi, Short communication: One DEA ranking method based on applying aggregate units, Expert Systems with Applications, 38 (2011), 13468-13471.doi: 10.1016/j.eswa.2011.02.145. |
[16] |
G. R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Systems with Applications, 37 (2010), 7483-7488.doi: 10.1016/j.eswa.2010.04.011. |
[17] |
G. R. Jahanshahloo, A. Memariani, F. HosseinzadehLotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Applied Mathematics and Computation, 166 (2005), 265-281.doi: 10.1016/j.amc.2004.04.088. |
[18] |
G. R. Jahanshahloo, L. Pourkarimi and M. Zarepisheh, Modified MAJ model for ranking decision making units in data envelopment analysis, Applied Mathematics and Computation, 174 (2006), 1054-1059.doi: 10.1016/j.amc.2005.06.001. |
[19] |
C. Kao and H. T. Hung, Data envelopment analysis with common weights: The compromise solution approach, Journal of the Operational Research Society, 56 (2005), 1196-1203. |
[20] |
M. Khalili, A. S. Camanho, M. C. A. S. Portela and M. R. Alirezaee, The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs, European Journal of Operational Research, 203 (2010), 761-770.doi: 10.1016/j.ejor.2009.09.002. |
[21] |
S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A super-efficiency model for ranking efficient units in data envelopment analysis, Applied Mathematics and Computation, 184 (2007), 638-648.doi: 10.1016/j.amc.2006.06.063. |
[22] |
X. B. Li and G. R. Reeves, A multiple criteria approach to data envelopment analysis, European Journal of Operational Research, 115 (1999), 507-517.doi: 10.1016/S0377-2217(98)00130-1. |
[23] |
F. H. F. Liu and H. H. Peng, Ranking of DMUs on the DEA frontier with common weights, Computers and Operations Research, 35 (2008), 1624-1637.doi: 10.1016/j.cor.2006.09.006. |
[24] |
F. H. F. Liu and H. H. Peng, A systematic procedure to obtain a preferable and robust ranking of units, Computers and Operations Research, 36 (2009), 360-372. |
[25] |
S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in DEA, Computational Optimization and Applications, 14 (1999), 261-266.doi: 10.1023/A:1008703501682. |
[26] |
J. C. Paradi, D. N. Reese and D. Rosen, Applications of DEA to measure the efficiency of software production at two large Canadian banks, Annals of Operations Research, 73 (1997), 91-115.doi: 10.1023/A:1018953900977. |
[27] |
N. Ramón, J. L. Ruiz and I. Sirvent, Reducing differences between profiles of weights: A "peer-restricted'' cross-efficiency evaluation, Omega, 39 (2011), 634-641.doi: 10.1016/j.omega.2011.01.004. |
[28] |
Y. Rool, W. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Transactions, 23 (1991), 2-9. |
[29] |
S. Saati, Determining a common set of weights in DEA by solving a linear programming Journal of Industrial Engineering International, 4 (2008), 51-56. |
[30] |
S. Saati and A. Memariani, Reducing weight flexibility in fuzzy DEA, Applied Mathematics and Computation, 161 (2005), 611-622.doi: 10.1016/j.amc.2003.12.052. |
[31] |
S. Saati, M. ZarafatAngiz, A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis, Ricerca Operativa, 31 (2001), 47-59. |
[32] |
C. S. Sarrico and R. G. Dyson, Restricting virtual weights in data envelopment analysis, European Journal of Operational Research, 159 (2004), 17-34.doi: 10.1016/S0377-2217(03)00402-8. |
[33] |
T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman), Jossey-Bass, San Francisco, (1986), 73-105. |
[34] |
T. Sueyoshi, DEA nonparametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives, Omega, 27 (1999), 315-326.doi: 10.1016/S0305-0483(98)00057-7. |
[35] |
R. G. Thompson, P. S. Dharmapala, L. J. Rothenburg and R. M. Thrall, DEA ARs and CRs applied to worldwide major oil companies, Journal of Productivity Analysis, 5 (1994), 181-203. |
[36] |
R. G. Thompson, F. Singleton, R. Thrall and B. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas, Interfaces, 16 (1986), 35-49.doi: 10.1287/inte.16.6.35. |
[37] |
R. M. Thrall, Duality classification and slacks in data envelopment analysis, Annals of Operation Research, 66 (1996), 109-138.doi: 10.1007/BF02187297. |
[38] |
K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis, European Journal of Operational Research, 143 (2002), 32-41.doi: 10.1016/S0377-2217(01)00324-1. |
[39] |
Y.-M. Wang and K.-S. Chin, Discriminating DEA efficient candidates by considering their least relative total scores, Journal of Computational and Applied Mathematics, 206 (2007), 209-215.doi: 10.1016/j.cam.2006.06.012. |
[40] |
Y.-M. Wang and K.-S. Chin, A neutral DEA model for cross-efficiency evaluation and its extension, Expert Systems with Applications, 37 (2010), 3666-3675.doi: 10.1016/j.eswa.2009.10.024. |
[41] |
Y.-M. Wang, Y. Luo and Y.-X. Lan, Common weights for fully ranking decision making units by regression analysis, Expert Systems with Applications, 38 (2011), 9122-9128.doi: 10.1016/j.eswa.2011.01.004. |
[42] |
Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis, Journal of Computational and Applied Mathematics, 223 (2009), 469-484.doi: 10.1016/j.cam.2008.01.022. |